




A big thanks to all the contributors for this book including
Isaac Joe Kong, Naveen Kumar, Tessa Holland, and Kellie Lutze.
Also a big thanks to Paul Strooper, Gary Buck, Dave Duncanson, Jon
Yeo, and Trent Buck for their reviews and input into shaping this
book. We love having you all in our community!



Copyright ©2019 Codebots.

All rights reserved. No part of this publication may be
reproduced, distributed, or transmitted in any form or by any means,
including photocopying, recording, or other electronic or mechanical
methods, without the prior written permission of the publisher, except
in the case of brief quotations embodied in critical reviews and certain
other noncommercial uses permitted by copyright law. For permission
requests, write to the publisher, addressed ‘Attention: Permissions
Coordinator,’ at the address below.

Codebots Pty Ltd
O�ce 1, 55 Railway Terrace
Milton, QLD, Australia, 4064
https://codebots.com/

Please contact distribution at mailto:support@codebots.com
ISBN 978-0-646-80083-7

https://codebots.com/
mailto:support@codebots.com


Contents
Preface 5

1 Introduction 11
1.1 Hypothesis Statement . . . . . . . . . . . . . . . . . . . . 18
1.2 Business Agility . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3 Software/People Fit . . . . . . . . . . . . . . . . . . . . . 21
1.4 The Insanity of Legacy Systems . . . . . . . . . . . . . . 24
1.5 Knowledge is Power . . . . . . . . . . . . . . . . . . . . . 25
1.6 Bots that Code . . . . . . . . . . . . . . . . . . . . . . . . 29
1.7 Future of Work . . . . . . . . . . . . . . . . . . . . . . . . 31
1.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2 Legacy Systems 35
2.1 Root Causes . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2 Inescapable Truths . . . . . . . . . . . . . . . . . . . . . . 40
2.3 Firecracker migration pattern . . . . . . . . . . . . . . . 45
2.4 Divide-and-Conquer Migration Pattern . . . . . . . . . . 47
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 Strategy and Tactics 53
3.1 Science + Iterations . . . . . . . . . . . . . . . . . . . . . 59
3.2 Community . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3 Microservices . . . . . . . . . . . . . . . . . . . . . . . . . 67

1



3.4 Fog of War . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.5 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4 Codebots 83
4.1 State and Behaviour . . . . . . . . . . . . . . . . . . . . . 90
4.2 Entity Diagram . . . . . . . . . . . . . . . . . . . . . . . . 92
4.3 User Interface (UI) Diagram . . . . . . . . . . . . . . . . 94
4.4 Security Diagram . . . . . . . . . . . . . . . . . . . . . . . 96
4.5 Development Target . . . . . . . . . . . . . . . . . . . . . 97
4.6 Testing Target . . . . . . . . . . . . . . . . . . . . . . . . 106
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5 Migration Kit 115
5.1 How to Use this Kit . . . . . . . . . . . . . . . . . . . . . 116
5.2 Reverse Engineering Requirements . . . . . . . . . . . . 118
5.3 Experimental Framework . . . . . . . . . . . . . . . . . . 123
5.4 Community Onion . . . . . . . . . . . . . . . . . . . . . . 127
5.5 Managing Expectations . . . . . . . . . . . . . . . . . . . 132
5.6 Story Estimation . . . . . . . . . . . . . . . . . . . . . . . 138
5.7 Entity and Requirements Traceability Matrix . . . . . . 144
5.8 Database Migration . . . . . . . . . . . . . . . . . . . . . 150
5.9 Spreadsheet Migration . . . . . . . . . . . . . . . . . . . . 153
5.10 PDF Migration . . . . . . . . . . . . . . . . . . . . . . . . 158
5.11 Bubble Context and Anticorruption Layer . . . . . . . . . 166

2



6 Conclusion 173

Glossary 181

Acronyms 191

Bibliography 193

Appendix A Change Log 199

Appendix B Codebots Field Trials 201

Appendix C Behaviours 205

Appendix D Agile Manifesto 209

Appendix E Risk Register 211
#1 Inaccurate Estimates . . . . . . . . . . . . . . . . . . . 212
#2 Scope Variations . . . . . . . . . . . . . . . . . . . . . 213
#3 End-user Engagement . . . . . . . . . . . . . . . . . . 214
#4 Stakeholder Expectations . . . . . . . . . . . . . . . . 215
#5 Poor Quality . . . . . . . . . . . . . . . . . . . . . . . . 216
#6 Poor Productivity . . . . . . . . . . . . . . . . . . . . . 217
#7 Inadequate Risk Management . . . . . . . . . . . . . 218
#8 Low Partner Engagement . . . . . . . . . . . . . . . . 219
#9 Inadequate Human Resources . . . . . . . . . . . . . 220
#10 Lack of Ownership . . . . . . . . . . . . . . . . . . . 221

3



4



Preface

“You will find only what you bring in.” Yoda

5



We embrace the continuous modernisation mindset in everything
we do, from building software to the publishing of this book. To
avoid this book becoming outdated, we modernise it as market
conditions change, sometimes multiple times per year and we will
never consider it will be complete. Through the use of
experimentation, and feeding the successes and failures of real
world projects back into the book, it is our goal to make this the
most relevant and well-read book on transforming legacy systems
across the planet. Each time a new edition is published, we will
send out the latest version to everyone who has purchased the book
previously. 1 This is our commitment to continually keep our
community up to date as the technology and tactics of this book
evolve.

The tone of this book is a reflection of our four company
values illustrated in Figure 1. As leaders, we are passionate about
core values and recognise that values drive culture, culture drives
behaviour and behaviour drives the performance of our entire
community.

1Go to https://codebots.com/continuous-modernisation to make sure you have the
latest version or contact us at support@codebots.com.
6

https://codebots.com/continuous-modernisation


Figure 1: Our Values

7



The intended audience of this book is medium to large
enterprises that have many software systems including
off-the-shelf and custom software applications. If you are from a
small business and you are struggling with your software
applications, then you may find this book useful too, but small
businesses usually do not have the budget required to move away
from cheaper off-the-shelf applications and spreadsheets. Our
intended audience is:
• CEOs and business managers that want a broader

understanding and strategy the role software systems can play
in the organisation.

• CTOs and IT managers that are involved in making decisions
around the organisational direction and use of software
systems.

• Any other stakeholders (designers, software engineers,
business analysts, project managers, etc) that are involved in
software projects and want to do it better.
In our approach to the book, you will see that we build on

familiar technology concepts and business methodologies but take
the initiative to repurpose them for the goals of continuous
modernisation. We act urgently, with a strong bias to action and we
prefer to test our raw assumptions and get feedback, rather than
crafting something that no one needs or wants to read. We develop
our opinions by delving into the facts, balancing science and data
8



with human empathy to find insights that help us make better
decisions. Finally, we are hard-working professionals striving to
achieve our mission but we never forget to have fun along the way :)

In this book you will also find a mix of both technical
information about software and also cultural stories around people.
Companies have become reliant on an army of people who know
their legacy systems so the challenge for building successful
projects is as much, if not more, a people story rather than a
technical one. This explains why our intended audience for the
book is decision and strategy makers who want to wrestle back
control, gain clarity and learn tactics to drive successful digital
transformation projects. We are eager to learn how our readers use
the migration kit activities presented in a later chapter and plan to
share specific examples of how the kit has been applied in future
editions.

We love books and inspirational characters like Patrick
Lencioni who creates The Advantage through organisational health
[21], Simon Sinek and his book, Start With Why, about how great
leaders inspire action [30]. Plus, business bibles like Scaling Up
from Verne Harnish [15] that cover the full gamut of people,
strategy, execution, and cash for creating successful companies to
name just a short few.

The heroes’ journey is a universal story, that involves a hero
who goes on an adventure, and in a decisive crisis wins a victory,
and comes back transformed. The Continuous Modernisation story

9



starts here, with you, so pour yourself a cup of tea, open your mind
and join us in applying the theory and tactics that will advance your
business agility journey.

10



1. Introduction

“Knowledge is power. Information is liberating. Education is the premise
of progress, in every society, in every family.” Kofi Annan

11



Technology, once the domain of a team under the CFO has
now become its own thing alongside the CTO and CIO. Technology
is driving change at every level and every part of an organisation.
But there’s a challenge. We have created a huge amount of
immovable software systems that are now inhibiting further
change. Across the globe today, legacy systems are one of the
biggest problems faced by the software industry. The problem
cannot be overstated, and as we travel further into the future,
legacy systems could arguably become the most common problem
across all business sectors and industries.

As a leader, how do you keep abreast of the innovations and
rapid changes in your market? Furthermore, how do you ensure
that your software systems will allow you to meet changing market
conditions? The days of relying on technologists without any
business insight are over. If you know that technology now touches
every part of the business, a strategy is needed that takes into
account the impact it has on the business from a productivity,
culture, and agility point of view.

Most organisations have reacted with a program of work
around a digital transformation but many of these programs are
failing. These types of projects carry a lot of risk as there are many
moving parts to them and they generally touch multiple parts of
the business at the same time. To mitigate the risks you must
deeply understand the root causes of the problems else you will be
leaving it up to chance for a successful outcome.
12



Continuous modernisation is a set of strategies and tactics
that can help an organisation navigate the pitfalls of digital
transformation projects. One of the tactics includes the use of bots
that code. Codebots are software robots that write code alongside
your human team. On average, they write over 90% of the code and
teams using a codebot are 8.3 times faster. Some of the benefits
include:
• Quality at speed.
• Reuse at scale.
• Reduce costs.
• Automated migration.
• No vendor lock in. You own the source code.
• Proven case studies.

Before we dive in too deep, let’s set the stage and do a thought
experiment on how do we build software applications today. In this
thought experiment, we will play the role of the software team and
you will be the product owner. We have assembled a cross
functional team with a mix of skills including design, organisation,
and technical. You are an expert in your domain and you have built
up years of experience understanding the good and the bad of your
industry. Overtime, you have suspected that there is a better way
and you are finally ready to build a software application to bring
your ideas to life. Exciting times!

13



We begin the process with some healthy and robust
conversations. These conversations would happen in various
locations like in a meeting or possibly over the phone. We would no
doubt be sending emails backwards and forwards to each other as
we scope out and refine the ideas. We would also do some long
whiteboard sessions and draw some meaningful diagrams to
represent the ideas and the solution. All of this would be put into
some sort of requirements specification that represents the plan of
what we are going to build, test, and launch. The software team
would then take the specification and translate it into code.

As seen in Figure 1.1, we have created a body of knowledge
about the software application but the connection is loose between
the knowledge and the code. It is the responsibility of the
developers to translate the requirements into the code. In practice,
the specifications are usually stored in the bottom draw of the
developers desk and largely ignored. Organisations that are
embracing Agile are helping with this problem by involving the
team throughout the entire lifecycle but the connection between the
body of knowledge and the code remains loose.

The loose connection creates a lot of risk and makes the
individual developers a bottleneck for the entire process. There is a
significant amount of knowledge being lost and a lot of manual
labour occurring that is ripe for automation. With each individual
software application being treated as a snowflake, we are setting
ourselves up to make the same mistakes over and over.
14



Figure 1.1: Typical software development project

15



Now let’s imagine an alternative scenario. Let’s take that
requirements specification out of the bottom draw of the desk and
put it back on the table in front of us. That body of knowledge is
extremely important on many levels. We have had many
conversations using language and captured a lot in text. We have
drawn a lot of meaningful diagrams that visually represent our
intent. Now here is the big difference, imagine a world where it is
not just yourself and us that can understand the knowledge, but a
world where a codebot can understand it as well. The codebot can
then take that knowledge and write the vast majority of the code
required for the solution.

As seen in ??, this creates a strong connection between the
body of knowledge and the code. The codebot is able to write the
vast majority of the solution and this opens up all sorts of
possibilities. Software applications can be made faster, of better
quality, and we can maximise reuse across multiple applications.
But it also leads to a fundamental shift around the role of
knowledge and the people within the organisation.

By making the connection strong between the knowledge and
the code, we are declaring that the knowledge is as important as the
code itself. This premise has multiple and far reaching
consequences. It can be the foundation for constructing a new way
of looking at some old problems. With an open-mind, let’s put
forward a hypothesis and use an experimental framework to see
what new boundaries we can discover.
16



Figure 1.2: Software development project with a codebot

17



1.1. Hypothesis Statement
The hypothesis presented in this book is that business agility can be
positively impacted through a process of continuous modernisation.
Continuous modernisation is a strategy for legacy systems to ensure
the software fits the people using it. The problems faced include
technical challenges around the software and cultural challenges
around the people. When a software/people fit is found, momentum
is gained by the organisation and business agility is increased.
1.2. Business Agility
A digital transformation implies a one-off event, but in practice, a
digital transformation should just be the beginning. We prefer the
term continuous modernisation, and as the name implies it is a
mode of evolution that does not stop, it’s an ongoing process.

As an organisation scales up, its complexity grows. An
example of this occurring is the communication lines between
people. When there are 3 people in the organisation there are 3
communication lines. When there are 4 people there are 6 lines,
when there 5 people there are 10 lines, and when you start hitting
some decent size like 50 people, the communication lines are 1225.
It is humanly impossible to keep track of this many communication
lines and they grow exponentially with more people. This
complexity generates three fundamental barriers around leadership,
scalable infrastructure, and marketing [15].

18



These fundamental barriers create valleys of death that occur
at certain organisational sizes and makes it is very difficult to grow
and stay relevant. If they are not addressed, the overall result is a
loss in momentum and business agility. Simply put, the
organisation cannot manoeuvre to meet changing market
conditions and is likely to find it harder and harder to deliver value
on business outcomes.

Legacy systems are a main contributor to a loss in business
agility. A typical example (and one we all know too well) that many
organisations face is around reporting. When there are a number of
legacy systems around different business units, there is usually a
lag time in getting the appropriate data collected and subsequent
reports to management. Sometimes the lag time can be weeks if
not months depending on the size of the organisation. This has a
negative effect on the organisation as the leaders cannot get access
to the right information at the right time, hence decreasing
business agility.

Another of the more frustrating scenarios is around
innovation. Imagine that someone in the organisation has a great
idea that will clearly make a difference as they have run
experiments and collected data to prove their business case.
However, the software that underpins that section of the business
is a legacy system like something off-the-shelf or an old custom
system that simply cannot be updated to match the idea. The
organisation loses out on many levels here. Firstly, the idea is lost

19



and the organisation does not adapt to a changed market condition.
Secondly, the actual person who had the idea is deflated and this
has a negative impact on the culture. Especially if it happens often.

These are two examples of how legacy software can have a
negative effect on the organisation. And I am sure that you can
think of a few more. Overall, it is clear to an experienced
practitioner that legacy systems have an overall negative effect on
your organisation’s business agility. So, what is the solution to
such a complex problem? Or even, is there one? In reality, there is
no silver bullet, but with a greater understanding and education
around the main contributors, it is possible to use a playbook of
strategies and tactics to minimise the impact of legacy software on
business agility.

To address the problem, organisations must first
acknowledge and really think about how they can increase business
agility. As seen in Figure 1.3, as the market conditions change, the
legacy software can eventually plunge the organisation into a valley
of death.

So, what does it mean to continuously modernise? Firstly, it
recognises that the moment you start using new software in an
organisation, it is a legacy system. And as time progresses, the
longer you leave the legacy system without giving it the love and
attention it needs, the harder it will be to update it and the more
business agility will drop as a result, as illustrated in Figure 1.3

20



Figure 1.3: Continuous modernisation increases business agility over
time

1.3. Software/People Fit
A lean enterprise [27] is always looking for a product/market fit.
The build-measure-learn cycles allow startups to iterate from a
Minimum Viable Product (MVP) to find traction and build a highly
scalable business. Great idea! But how do organisations use this in
context of an enterprise? A lean enterprise [16] is an extension into
larger organisations to help them innovate at scale. By looking at
the mechanics of how enterprises work, it is possible to influence
the technical and cultural forces of an organisation to move them
into a more lean and agile mindset. We love the work put forward

21



by these authors and we recommend to check out their work. It is
well worth the read.

By living one of our core values, scientific but not heartless,
we are experimenting with the ideas from the lean enterprise but
looking for ways to incorporate them in an organisational context,
as opposed to a startup. While these are not mutually exclusive
(they have an intersection like a Venn diagram can) there are some
subtle differences that can have a significant impact. Our
hypothesis statement for this playbook ends with; when a
software/people fit is found, momentum is gained by the organisation and
business agility is increased.

The Product/Market Fit (PMF) concept was developed and
named by Andy Rachleff 1. Essentially it means that you’ve found
the holy grail, a profitable market with a product that satisfies that
market. It sounds simple enough but requires a deep understanding
of the market you are targeting and is often measured by whether
the market is willing to pay for it. Software/people fit is targeted
towards the lean enterprise and once achieved, it means that you’ve
found a software solution to a business problem that fits the people
using it. The community of people who rely on the software will
not necessarily pay money for it, so the value (or fit) must be
measured by the impact it has on business agility.

112 Things about Product-Market Fit https://a16z.com/2017/02/18/

12-things-about-product-market-fit/

22

https://a16z.com/2017/02/18/12-things-about-product-market-fit/
https://a16z.com/2017/02/18/12-things-about-product-market-fit/


If business agility is an organisation’s ability to respond to
change, then how do you create sustainable business growth in a
seriously unpredictable world? In the corporate environment, a
highly scalable business is one that can maintain or improve profit
margins while sales volume increases. The challenge with chasing a
highly scalable business is that it often puts profits before people.
Imagine instead, a network of teams within a community-centred
culture, that embrace organisational values and capabilities and
learn through experimentation, in the pursuit of a shared vision
that is enabled by codebots and co-creates value for all
stakeholders. Which type of company would you rather be a part of?
A focus on business agility enables the community of people within
the organisation to be more adaptive, creative and resilient in times
of unpredictability, with a focus on experimentation to test new
ideas.

In the lean enterprise book, the idea of build-measure-learn
feedback loops is used for quickly establishing how effective a
product, service or idea is. We will go into greater depth on the use
of science plus iterations in Chapter 3, however our preference for
transforming legacy systems is to use hypothesis statements and
the experimental framework, which explores and builds on ideas of
the past.

In this book we will discuss the tactic of using science plus
iterations as part of an organisation’s momentum. But what is
momentum and how is it different from velocity? Velocity is

23



defined as the rate of change of position of an object. Momentum is
the product of the mass and velocity of an object. We often speak
about velocity when we should be referring to momentum, which
takes into account the mass we are trying to move. In context of an
organisation, small movements made every day by the wider
community will create far greater impact than if a few individuals
make big leaps of change. This enables continuous modernisation
to naturally occur as part of the organisation’s momentum.
1.4. The Insanity of Legacy Systems
A legacy system is any software system that is deployed into an
organisation. From day one, the software is legacy. It does not
matter if the software is some off-the-shelf application or
something that is custom built, the day it arrives in the
organisation is the day its legacy begins.

Legacy software has been a problem since the beginning of
programming. In 1980, Lehman defined the laws of software
evolution [20] and identified the sources of evolutionary pressure
on software systems and shows why this results in a process of
never ending maintenance activity. One of the key points is that it
is never ending. This results in the total cost of a software system
skewed towards an average of 70% on maintenance and 30% on
development.

Without spending the appropriate budget on a legacy system,
the decay of the system will fasten but eventually the legacy system

24



becomes such a burden on the organisation that some action must
be taken. The action is usually to replace the legacy system with a
new software system. But then the cycle continues as the new
software system becomes the legacy system and history repeats.
This is the insanity of legacy systems.

In Chapter 2, we devote an entire chapter to legacy systems
and unpacking the root causes of legacy using the five-whys
technique. What is interesting about the root causes is that it
generally comes down to either a lack of control or a lack of
knowledge. This is an important acknowledgement as our
hypothesis for continuous modernisation to have a positive impact
on business agility, the root causes must be risk mitigated and built
into the solution for legacy systems.
1.5. Knowledge is Power
Have you ever read the book Sapiens [14]? It is the story about
homo sapiens from a historical perspective. The author paints a
picture of how our species has gone through a number of
revolutions including the cognitive, agricultural, and industrial
revolutions. Now here is a spoiler alert, basically everything we
create as a species is a myth and is only contained within our
collective imagination. For example, the concept of money as a
system of exchanging goods. The author uses many examples to
support this perspective with one example that really stands out
and is highly relevant to our discussion here.

25



A business or an organisation is a legal entity just like
individuals are legal entities. An organisation can own property like
an individual can. An organisation can take legal action or have
legal action taken against it like an individual can. But an
organisation can live on well past the original founders and have its
own vision, mission, and values that drive the direction it takes. Yet
with all these rights and responsibilities how does an organisation
keep and retain its knowledge? Individuals use our brains and tools
to help us. What does your organisation use?

In a lot of cases, the knowledge of an organisation is wrapped
up in the individuals who work within it and this raises a number
of risks. An obvious and well-known risk is when an individual
leaves the organisation a lot of the knowledge will be lost with
them. In this case we try to do a knowledge handover before the
individual leaves. Another risk is time wasted, whenever the
knowledge contained within a single individual is required by a
different individual, time is spent communicating between them.
To help mitigate this risk, we try to get people to document their
knowledge so that others can read about it or watch a video. In this
way, the individual with the knowledge is not interrupted every
time someone else wants to attain that knowledge. There has been
varying degrees of success using a body of knowledge within
organisations and to do it well is a big challenge.

From an academic point of view, a body of knowledge is
usually viewed as a tree. Ideas build upon other ideas. For example,
26



in physics it was general relativity that layed the ground work for
quantum mechanics. It was then quantum mechanics that lead to
the silicon-based transitor and modern computing. The tree of
knowledge is a common metaphor used to describe scientific
discovery.

Actually, it is rarely that clean cut. The influences on an idea
can come from many different directions. In maths a tree is a
directed graph, i.e. all of the transitions on the graph go in one
direction making a tree. A body of knowledge is more like a graph
than a tree. The influences of an idea can be like this with many
transitions from other ideas (nodes) in the graph. Another way to
think about it is to compare the way a human brain works. The
neural networks of a brain are connected and its the collection of
neurons that create your knowledge.

Knowledge Management (KM) has a long history and is
concerned with how an organisation can make the best use of
knowledge to reach its objectives. Overtime, KM has been
researched and applied from many difference directions. In
Figure 1.4, the layers in the Data, Information, Knowledge, and
Wisdom (DIKW) triangle show the relationships between the layers.
Data is pure and simple facts with no particular organisation;
Information is structured data that adds meaning within the
context; Knowledge is the ability to use the information strategically
to achieve ones objectives; And wisdom is the capacity to choose
objectives consistent with values of a larger social context.

27



Figure 1.4: Data, Information, Knowledge, and Wisdom

What is very interesting from a continuous modernisation
perspective is how do we use KM in way that has a positive effect
on an organisations business agility. When we typically build a
software system we have lots of conversations (using language) and
draw diagrams. We then take this information and capture the
knowledge in some sort of requirements specification and hand
that over to the development team. The development team then
writes the code to satisfy the requirements but there is usually no
strong connection between the source code and the knowledge.
This is typical software development whereby we have leaked data,
information, and knowledge throughout the entire process and left
ourselves in a poor position for any further updates. This does not
sound wise.

Stepping back and looking at the bigger picture there are
some important questions we must ask ourselves. How do we stop
28



leaking knowledge and make the collection of knowledge easier?
How do we organise the knowledge so that it is connected and
found when needed? How can we collect the knowledge in a way
that a codebot understands? The answers to these questions are
addressed throughout this book but hopefully these types of
questions have sparked your curiosity. As a leader, and we all are
no matter our position in an organisation, we must look at
knowledge in a new light.

If we know that organisations are a Sapien myth [14], this
sheds a unique light on why knowledge is as important to an
organisation as it is to us as individuals. An organisation has an
existence beyond any individual. This should motivate us to create
a body of knowledge. If we do not, our organisation will suffer from
amnesia and struggle to learn from the past and teach about the
future state it is aiming for. Without sufficient knowledge, we lose
control over a situation and this can have a negative impact on the
outcome. The organisations that will not just survive, but thrive in
the modern era will have knowledge as a big part of their
organisational health.
1.6. Bots that Code
Codebots is both a methodology and a set of technologies. It is
important to have an understanding of both as it will affect some
decisions at the beginning of a legacy migration project. Firstly, the
methodology is complementary to your current software

29



development process. It has been designed to be used alongside
both iterative and waterfall methodologies. There is no need to
change your current software development methodology. Secondly,
you will need to choose a codebot to use at the beginning of the
project. Each codebot writes to a different technology stack. For
example, Springbot writes to a Java server-side using the Spring
and Hibernate frameworks in the target application. If this
server-side technology stack does not suit your organisation, then
there are a number of other public general-purpose bots for C# and
LAMP that can be used too. However, if your organisation has
specific technology needs beyond these, which can sometimes be
the case, then we build private codebots specific to that
organisation and technology stack.

In Chapter 4, we take a closer look at the codebots and
answer many of the frequently asked questions we receive. To get
you started, we often get asked how do you use a codebot? On the
platform, there is an intuitive drag-n-drop user interface where
you can manage, build, test, and deploy your applications. Like all
software systems, there is some input to the codebot, the codebot
does some processing, and the output comes out the other side. The
output is code that looks like a developer has written it and not a
jumble of code generator mess. The codebot writes to a testing
target as well. So, upon starting a project you already have good
test coverage and a framework for you to start adding in more tests
as required.
30



Codebots can deliver speed to a software project as it does the
heavy lifting of the project. Our data shows over 90% of the code
base can be written by a codebot and development teams are 8.3
times faster2. Codebots can deliver better quality by facilitating test
tool development and supporting increased test coverage. Codebots
provides reuse by encapsulating common business patterns to be
used across multiple projects and teams.
1.7. Future of Work
If this is the first time you are reading this book, then we would
like to say a big welcome to the community! We started Codebots
with the mission to help our community build better software and
we do this by living our values day in and day out. Just in case you
skipped over the preface, you can read more about our values there.

It is our vision for humans and codebots to work better
together. Whenever a new technology is introduced there are
always skeptics, doubt and even fear. We believe that responsible
use of technologies has the potential to set humans free from
repetitive, mind-numbing activities and opens up new possibilities
for the future of work. Machines have repeatedly proven over the
course of history that with responsible use, they can work together
with humans for our betterment. So far we have demonstrated that
both humans and bots can work on successful projects without

2Read about the Codebots Field Trials in Appendix B and how these results were
obtained.

31



destroying jobs. There is an unquenchable thirst for software
world-wide, and a limited amount of trained professionals to
deliver projects, so the Codebots technologies is fulfilling a market
demand. It also provides the necessary tools for your local team to
compete with offshore development teams and bring operations
back on shore.

Codebots are fantastic at finding patterns and doing the heavy
lifting on software projects, but it’s the humans of an organisation
who are able to be adaptive, think creatively and be resilient in the
face of technological and cultural change. It requires a move from
thinking about organisations as machines, to organisations as
communities. This naturally creates an environment where bots
and humans can work to their individual strengths in ways we are
still discovering, with the purpose of finding software/people fit.
1.8. Summary
As you undertake a legacy migration project, you will face many
challenges that the codebots can help with. Codebots is not a silver
bullet that can magically migrate a legacy system at the click of a
button; it is a methodology and technology set that decreases the
risk of failure. In Chapter 5, we present the migration kit. The kit
contains a number of activities that will help you find your
software/people fit. Some of the activities are purely technical; for
example, how to migrate from an old database into a new
microservices architecture using the OpenAPI standard but locked

32



down with AAA security. Some of the other activities are related to
people; for example, how to manage expectations when you are
asked to report on how long a project will take. You must be able to
give an answer and most importantly, manage the expectations of
the stakeholders.

Eric Evans in his book on Domain-Driven Design (DDD) [8],
describes legacy as a ball of mud that oozes out and entangles itself
not just with other software products, but within the business
processes and people of the organisation itself. By recognising this
as a natural byproduct of using software systems means that we
can look for strategies and tactics to minimise the impact of legacy
software and increase business agility along the way.

We expect our technologies to evolve as we realise our vision
of humans and codebots working together, but our mission and
values will stay fixed and always remind us of our ’why’. As Simon
Sinek [30] says, start with ’the why’ to define your vision that then
becomes your company’s North Star or Southern Cross (for those
readers in the southern hemisphere). We have an ambitious
roadmap with lots of exciting and ground-breaking ideas that we
will continue to invite the community to be a part of over time.

33



34



2. Legacy Systems

“What is the definition of insanity? Doing the same thing over and over
again and expecting a different result.” Albert Einstein

35



What is a legacy system? Depending on which conference, cafe,
meeting room, or pub you are sitting in, you will get many different
answers to this question. For the purpose of this book, we define a
legacy system as a software application that has been deployed into
your organisation. The moment a new software application is
introduced it is legacy. It does not matter if it is off-the-shelf,
custom built, or some combination. Legacy starts to set in
immediately.

Figure 2.1: The moment new software is introduced, it becomes
legacy

Our friends from Gartner recommend seven options for
modernising: encapsulate, rehost, replatform, refactor, rearchitect,
rebuild, or replace [24]. Our other friends from Cognizant
recommend a smaller set of five options: total transformation,
gradual replacement, duct tape approach, improve existing, or no
system change [28].
36



These are all very good high-level options and give broad
options to consider. To dive down further into the detail on how to
actually implement a plan, we first need to find out the root causes.
A great technique for this was developed by Sakichi Toyoda and was
used within the Toyota Motor Corporation during the evolution of
its manufacturing methodologies. It is incredibly simple, when a
problem occurs, you drill down to its root cause by asking “why?”
five times. So, lets give this a go and see what results we can find.
2.1. Root Causes
Human resources turnover has lead to the new lead developer
demanding that the existing software application needs replacing.
Why? Because it’s too hard to maintain. Why? Because the
developer who maintained it has left the business. Why? Because
she inherited it and was frustrated. Why? Because there was really
poor documentation. Why? The root cause is because we don’t have
access to the knowledge that we need.

The CTO is presenting to the management team and insisting
that the learning management system needs replacing. Why?
Because it’s a monolithic application. Why? Because it can’t be
customised. Why? Because it’s built around processes that are no
longer relevant to our business. Why? Because we recently changed
our business processes. Why? Because we needed to respond to the
market. Why? The root cause is because we don’t have the control
over the software that we need.

37



The business analyst in a large real estate company wants to
replace an access database. Why? Because it doesn’t do what we
need it to do. Why? Because it’s not in the cloud? Why? Because it’s
a local database we built when we were 20 people in one location.
Why? Because back then we could collaborate in person. Why? The
root cause is because we don’t have access to the knowledge that we
need.

The entire marketing team is freaking out and wants a new
Customer Relationship Management (CRM) tool. Why? Because it’s
an off-the shelf product and it’s no longer supported. Why?
Because the vendor no longer exists. Why? Because they were
acquired and shut down. Why? Because they were competition in
the market. Why? The root cause is because we no longer have
control over the software that we need.

That was just four scenarios that we applied the five-whys
technique to. As you can see, the root causes surrounding lack of
control or lack of knowledge come up all too often. In each
scenario, the cause of the legacy system can start from lots of
different locations, but they all have a negative impact on your
organisation’s business agility.

So, how has the world been dealing with legacy systems so
far? Besides burying our heads in the sand, we usually either rewrite
the application, or look to buy something off-the-shelf, but all
options have many serious pitfalls.

38



Off-the-shelf systems are brilliant if you can find the right
fit. There are no long development cycles to wait for software
engineers. Any bugs found in the application are the responsibility
of the vendor. And if the licence model is favourable, the total cost
of ownership can be better. However, each of these advantages also
has a dark-side whereby you can get tied in a knot. Development
cycles can become longer if any customisations do not fit neatly
with the application. Bug fixes can take an unacceptable length of
time as the vendor deals with the enormity of their back log. And
the total cost of ownership could blow out as circumstances change
and you become vendor locked and cannot manoeuvre. Sometimes
we just live with this because the alternative is a lot worse.

On the other hand, we could look at rewriting a legacy
system. Writing a new application is fun and working on a
greenfield application is hands down the best time for a software
team. We all know this. So, if you ask a software team how to deal
with a legacy system, they will recommend that you rewrite and
you must use the latest and greatest technology that all the other
companies are using, and if you don’t, you will be at risk to your
competitors. There is some truth to this, but the moment we
rewrite an application it becomes the legacy system of tomorrow
and history repeats!

So, how do we break the cycle of legacy systems? Well, the
short answer is we must embrace legacy systems and move into a
mode of continuous modernisation. In highly complex and dynamic

39



ecosystems, it is the application of strategies and tactics to
minimise risks and play to our strengths that tip the odds in our
favour for a successful outcome.

Before this can happen we must recognise some inescapable
truths to which there are no silver bullets. But for the more
experienced professional, we know that once a risk is
acknowledged, then mitigation can be put in place to help manage
it1. So, what are the inescapable truths?
2.2. Inescapable Truths
The first is an old phenomenon ... garbage in, garbage out. For any
process that has inputs and outputs (and we are not just talking
about software applications), if you put garbage into it, you will get
garbage out of it (whatever it is). There is no escaping this. So, if
you try to take a legacy system and run it through some sort of
migration tool, you will get all the garbage on the other side as
output. This is especially true in our experience when attempting
migration from source-code, i.e. if you attempt a source-code
migration from an older programming language to a more modern
one.

This inescapable truth leaves you two broad options. You can
either clean the garbage before it goes in, or try to clean the garbage
as it comes out. Whichever way you choose, you will run into the
second inescapable truth, knowlegde is always missing. In your quest

1Have a look in Appendix E for our top risks.
40



to gain visibility and find the required knowledge about the legacy
system, you will likely come across end users, project managers,
scrum masters, software engineers, designers, and all sorts of
people that may have influenced the system (this is usually the role
of a business analyst). But there will be holes (sometimes huge
ones!) that people simply can’t fill with answers as no one knows
where the documentation is ... or they didn’t have time to do it.
This means that knowledge is always missing about a legacy
system and something that cannot be avoided.

This lack of knowledge may result in teams being afraid to
make changes, which leads to the next inescapable truth; this is as
much a people problem as it is a technical problem. Once you have
solved the garbage in, garbage out problem, if you go ahead and
build a great software application without involving the people who
will be using the application, the project will be doomed to failure.
The truth is that people are complex and at times resistant to
change. Who can blame them? Just think about how many times
big projects that will revolutionise an organisation have been
announced and then just fade away. The key is to identify the
community of people who are most invested or opposed to the new
system, and take them on the journey. We will explain how
community can be used as a tactic later in the book but be ready to
prioritise the people and don’t underestimate how long this can
take!

41



These are the inescapable truths that you will come across for
any legacy migration project. There will be significant effort to
gather the knowledge around the legacy system to make sure that
the garbage is not carried through to the new system. You will need
to involve the people to help with this process and take them on the
journey, so ultimately the new system is embraced and has a
positive impact on the organisation.

From the inescapable truths we know that we are going to be
dealing with a lot of pain. This is not going to be easy. However,
our innate satisfaction as homo sapiens is proportional to the
relative level of difficulty we can master. This has resulted in an
interesting shift in the mindsets of our software teams. Previously,
when legacy system projects were seen as undesirable, brownfield
projects, no one would want to take them on. Especially with such a
high rate of failure. Now, they are seen as a challenge worth taking
on. Greenfield projects are easy in comparison.

Legacy systems come in all shapes and sizes. In the next
chapter, we are going to dive in deep and talk about some strategies
and tactics. But, before we do that, let’s get your creative juices
flowing and discuss some scenarios.

Legacy systems become entangled within the organisation.
They become tightly coupled with other software systems. They
become the normal for how people expect to use the system,
possibly ending up in scenarios in which people have to manually
copy and paste data between applications to stitch up a business
42



process. It is common sense that when approaching a legacy
migration project not to use a big bang approach i.e., do not to
migrate the whole system at once as it is typically a bad idea. But
there are scenarios where the legacy system’s entanglement is low
and it is fairly isolated. In these circumstances it could be possible
to migrate the legacy system in a project, instead of being a big
bang, we call these firecrackers! The firecracker migration pattern
is discussed in Section 2.3.

Alternate to the firecracker we use a divide-and-conquer
migration pattern. This pattern is used when the legacy system is
too large to complete in a single step using the firecracker
migration pattern. The divide-and-conquer migration pattern is
discussed in more detail in Section 2.4. Figure 2.2 shows a flow
chart of the decision making process for which migration pattern to
use. You will notice that both migration patterns ask for a
Structured Query Language (SQL) compliant schema for the
migration. This is the best starting point for a migration project as
it leads to a data migration path from the old legacy system across
to the new application. However, if you are not migrating from a
legacy system backed by a database, don’t stress as you can
substitute the database for whatever technology you are using. The
steps will be the same but the implementation will be different.

43



Figure 2.2: Database migration workflow

44



2.3. Firecracker migration pattern
This is the first of two migration patterns we are going to discuss in
this chapter. For smaller projects, firecrackers can be used as the
size of the project is small enough to do in a reasonable amount of
time. In Figure 2.3, we show a conceptual picture of a firecracker
migration pattern. The approach is to gather knowledge about the
old application (bottom right) and then build a new application (top
right) from this.

Figure 2.3: Firecracker migration pattern

45



The following points describe the broad steps of the
firecracker migration pattern:
• Document the requirements of the old application to create a

backlog for the new application. Remove old requirements that
are no longer needed 2.

• Reverse engineer the schema from the old database. Clean up
the schema to remove any garbage.

• Design the User Interface (UI) to satisfy the requirements from
the backlog,

• Develop and test the new application.
• Deploy and migrate the data. Since you started with the old

schema, a migration path is possible.
As a broad approach to migrating legacy systems, the

firecracker migration pattern works well for smallish and fairly
isolated legacy systems. But something is not quite right, haven’t
we just replaced the old with the new and gone back to square one?
We have, though we have missed one very important step. We are
going to make that knowledge about the legacy system as important
as the system itself. We are also going to take it one step further:
we are going to have a codebot take that knowledge to write the vast
majority of the new system. So, the next time we are updating the
old legacy system, we are already at the point in which we are ready

2See Section 5.2 of the migration kit on reverse engineering requirements.
46



to go and can make some changes. Later in this book we are going
to discuss in more depth the role of models to sustain knowledge
(Section 3.5). We are also going to look at how these codebots work
and the benefits they bring to your organisation (Chapter 4).
2.4. Divide-and-Conquer Migration Pattern
The firecracker migration pattern is a tried and tested approach to
migrating legacy systems that are smallish and fairly isolated.
However, let’s notch this up with a more complex scenario! For the
non-technical readers, this section is heavier reading so you may
want to skip over here and possibly come back later when you are
seeking some finer level details.

It is quite common to come across a legacy system that is so
large that it cannot be replaced in a single project. It would be
impossible to do so and any attempt would be to the detriment of
the organisation. So, we must divide-and-conquer!

Take some time now to think about how you would do this. It
can be mind-boggling. How do you deal with having an old and a
new system live at the same time? How do you ensure that the
people using it have everything that they need? How do you deal
with data integrity and make sure you are not breaking other
systems up-stream or down-stream? These are all very good
questions and we are going to present a divide-and-conquer
migration pattern as shown in Figure 2.4.

47



Figure 2.4: Divide-and-conquer migration pattern

48



This figure is more like a deployment diagram. The old legacy
system is on the left and the new legacy system is on the right.
Each legacy system is split into an application (top) and a database
(bottom). The humans on the left are the end users of the old
application and the workerbot on the right will simulate the
humans during the transition phase. The following points describe
the broad steps of the divide-and-conquer migration pattern:
• Follow the steps from the firecracker migration pattern i.e.,

reverse engineer the requirements and design the new
application. But only a subset of the requirements.

• If possible, add an interceptor between the old application and
its database to forward all requests to the workerbot.

• If possible, add an observer to the legacy application that is
able to forward other request data to the workerbot.

• Since all projects are different, think of different observers and
interceptors you can use to send to the workerbot.

• Develop the workerbot to interpret the requests from the
observers and interceptors to mimic the same requirement but
in the new application.

• Use an isolation checker to ensure the data integrity of the
new application. It’s possible that some requirements have
been missed and its important to do a delta between the
databases and make sure it’s what you expect.

49



It will take significant effort to build the framework around
the old legacy system. The observer, interceptor, and workerbot will
take time to get right. But once you get them going, you will have a
path to continue the divide-and-conquer approach on the old legacy
system. The seeds you sow today will yield the crop of tomorrow!

Before we get too carried away, there are some other
scenarios worth discussing as well. What if the old legacy system
has input from an up-stream system? Or, what if the old legacy
system outputs to a down-stream system? For any input that
comes into the old application, the approach is to use interceptors
and observers to pass it onto the new application. And for any
outputs from the old application, the approach is to have the new
application do the same, but to a mock3. Then use an isolation
checker to ensure that the expected output from the old application
compares to the mock.

The last complex scenario for discussion is when the legacy
system is entangled with other systems. A common type of
entanglement is a shared database, i.e. when two applications
share the same database. This is probably one of the worst design
decisions that we have made in the software industry. As an
uncontrolled interface there is no telling how deep that rabbit hole
might go. The best approach to deal with this scenario is to treat the
two applications as if they were one application. So, when you are

3Mocks are common in testing to mimic another system without it actually being
there.
50



following the divide-and-conquer migration pattern, you may need
to build multiple observers and interceptors on both applications so
that the isolation checker will pass. You can see the importance of
the isolation checker here as it will alert you if there is a third
application using the database that noone even knows about.
2.5. Summary
In summary, we have taken a close look at legacy systems. For the
purpose of this book, we define a legacy system as any software
application the moment it is deployed inside the organisation. It
can be custom built, off-the-shelf, or anything in between. The
insanity of legacy systems is that once we replace them with a new
application, that application becomes the legacy system of
tomorrow! So, how to we break the cycle? The smart approach is to
set yourself up not just for the first legacy migration, but all the
subsequent ones after that. The trick is to make the knowledge
about the legacy system as important as the system itself. This will
minimise the knowledge loss across the organisation and enables a
codebot to write most of the new system for you, based on that
knowledge. Is that super cool or what?!

51



52



3. Strategy and Tactics

“Success is not final, failure is not fatal. It is courage to continue that
counts.” Winston Churchill

53



We like to know the big picture. If you can visualise what you are
trying to achieve, then you can show initiative and make decisions
that do not require someone to give you direct approval. Knowing
the big picture is the strategy, how you achieve the strategy are the
tactics.

A strategy is the overarching plan. Tactics are specific actions
undertaken as part of the strategy.

To help build a visual picture of our proposed strategy, we are
going to use military strategies as an analogy. Military strategies
take many forms and are always dependent on the terrain and units
involved on both sides. We are not going to go that deep but there
are some well-known strategies worth exploring.

A frontal assault is typically a last resort as you would be
subjecting yourself to the maximum defensive power of the enemy.
If the flanks (sides) of the enemy are an option, this can be a much
better way to attack (see Figure 3.1).

Figure 3.1: Frontal assault vs flanking manoeuvres

54



If there is no option for a flanking manoeuvre and a frontal
assault is the only choice, a smarter strategy would be to maximise
your offensive power on only part of the front to penetrate through
the enemy line. Once through, you can then attack from behind the
enemy where they are weaker as their defences have been setup
facing out. This is a well-known strategy for breaching the enemy
line and attacking out over several phases. In the armoured and
motorised warfare, it is sometimes referred to as a Blitzrieg
strategy. Phase 1 is to penetrate the enemy line, phase 2 is to regroup
and recognisance, and phase 3 is to attack other enemy positions.

Figure 3.2: Blitzrieg
55



So, why all this talk of military strategies and tactics? The
analogy goes like this; the enemy is your software ecosystem. If
you have lost control of your software ecosystem and legacy
systems have taken root, then you are burning cash and not able to
appropriately support the business to carry out its purpose. In
reality, your software does sometimes feel like this. Once you have
relative control of your software ecosystem, you will be able to
manoeuvre to meet changing business needs. So, it is time to apply
some strategies to modernising the ecosystem.

A complex software ecosystem has no flanks i.e., no matter
which direction you approach it from you are always faced with the
same problems around legacy and lack of manoeuvrability. A
frontal assault would be folly, as there are simply too many
applications in a complex software ecosystem to tackle at once. We
have worked in environments where there are not hundreds, but
thousands of different applications.

This implies a good strategy for us to explore is the Blitzrieg.
We want to maximise our efforts by concentrating our forces. As
seen in Figure 3.3, Phase 1 is to modernise a legacy system, phase 2
is to map and connect to other systems, and phase 3 is to build new
applications and modernise other legacy systems.

The hardest part about getting started can be knowing where
to begin. Standing at the base of a mountain looking up at the peak
can be intimidating and while it’s important to think big, you want
to move past the initial overwhelm and start small. One foot after
56



Figure 3.3: Three phase strategy

the other, you begin by identifying a problem that needs to be
solved and rallying the support of a core team of people. You don’t
have to know all the answers upfront; you just need to agree why
you’re doing it and start the learning.

Once you have your core team engaged and have proven your
playbook of strategies and tactics on smaller projects, you will
approach a magic moment when the momentum you’ve built
reaches a threshold. In Malcolm Gladwell’s book, The Tipping
Point, he puts forward the concept that small changes lead to
making a big difference that can start an epidemic. This is exactly
the kind of change that a digital transformation can spark. Starting
with a small, focused team who use the learnings they’ve made as a

57



guide to find a repeatable process that will gain traction in the
business, or as Gladwell refers to it as the stickiness factor. This
repeatable stickiness becomes the mechanism to incorporate
learnings into subsequent projects.

Now is the time to scale up to larger teams but remember,
think big but start small! A tight team of 4 to 6 empowered
individuals is enough to get your digital transformation underway.
Building on the momentum and history of small successes, you are
able to rally the support necessary to execute on the bigger vision of
continuous modernisation. This sets the organisation up to take
advantage of changing market conditions, deliver value on business
outcomes and impact their business agility.

With a strategy planned out, let’s get into some of the tactics
and look at the detail. The five tactics:

1. Use science to drive innovation at a pace in step with the
organisational rhythm.

2. Enable the community around your organisation. A strong
community builds a defendable moat around your organisation.

3. Build small loosely coupled microservice applications
emphasising a separation of concerns.

4. Increase the visibility and control of the entire software
ecosystem by lifting the fog of war.

5. Use models to capture knowledge and enable control
through the use of codebots to do the heavy lifting on software
projects.
58



3.1. Science + Iterations
One of the most important concepts to recognise when planning out
strategies and tactics is to acknowledge time. According to Einstein,
time is relative to the observer’s motion and it is not constant. It is
the speed of light that is constant. But for us mere mortals that live
our daily lives on this planet, time does feel like a constant and it
will continue to roll forward at the same rate no matter what we do.
Since the passing of time is inevitable, it would be advantageous for
us to make it an ally of our strategies and tactics. Can we use the
concept of time (without knowing the future state of a project) to
help shape and increase the chances of a successful project? This
may seem a strange question, but in our experience with large
projects, once the ball is rolling and the project is underway, it is
impossible to impose a pure top-down structure over the project to
ensure its success. This naturally leads to questions around
enabling a more bottom-up approach. Something that enables the
team to have freedom to be creative and solve problems, but to have
bumper lanes to keep them on the path.

The tactic is to concurrently use science plus iterations to
enable continuous modernisation to naturally occur as part of the
organisation’s momentum. In this section, we will delve into what
makes good science and the use of iterations as part of an
organisation’s operating rhythm.

59



Science is the great enabler and it really started to accelerate
during the renaissance period of the 1600s. At this time, humans
began to realise that they didn’t know all the answers and some of
the fundamental things that they thought were true, were false.
Galileo gathered evidence about a theory that Copernicus had
proposed and it showed the earth was not the centre of the solar
system. This was a huge and fundamental shift in the thinking of
humans and what it demonstrated was that maybe we simply do
not know. During the following centuries it became the norm to ask
fundamental questions and what we believe to be the coolest thing
about science, is that it’s ok not to know the answers.

We love science so much that we have made it one of our
values! But some people do not love science. Usually the reason for
this is flashbacks from school where you are trying to work out
some complex maths problem and it feels like your brain is on fire
and you end up feeling stupid because you can’t find the solution.
We have all been there, but that is not science; maths is one of
many tools used by scientists and science is a whole lot more.
Science is powerful and if you are not using it already, it is time to
get in the mindset.

How does science work? First, you ask a question that you do
not know the answer for. And it is ok not to know and other
scientists respect this, which creates a great culture when talking
science. After you have proposed your question then you go about
finding the answer. That’s it! But to sound more scientific the
60



question is your hypothesis and finding out the answer is your
research where you run experiments to collect evidence. The result
of the experiments can be both positive, negative or inconclusive.
Sometimes a negative or inconclusive result can be as revealing as a
positive result. So again, this creates a great scientific culture, as it
is not only positive results that are respected; it is the contribution
to the body of knowledge that counts.

Let’s look at a quick example. The hypothesis for this book is
that business agility can be impacted by continuously modernising
legacy systems. To gather evidence we are going to help
organisations run legacy migrations projects and measure the
impact this has on their business agility. Throughout the process,
we are going to run many experiments and subsequently update the
migration kit presented in Chapter 5 with the results. As we get
more results we are going to publish new versions of this book and
resend it to the community to ensure everyone is kept up to date.

The key to good science is designing good experiments. A
poorly designed experiment will lead to no results as no meaning
can be derived from the evidence and data. A good way to design an
experiment is to reverse engineer the experiment from what the
final report should look like. Imagine that you are presenting the
report to someone and you have some cool graphs and insight to
show them. What is on these graphs? And what are the insights? If
you start with this in mind, you can work backwards to discover
what experiments and data are needed. Maybe you need to design a

61



survey to feed in some data. Maybe you need your team to collect
data as they do some activities. Whatever it is, start with what the
final report looks like and work backwards from there.

Usually it takes multiple experiments to gather evidence for a
hypothesis. So, how do you get your people doing experiments in
an organisation where everyone is already busy? This can feel like a
real challenge. Firstly, we have made science one of our core
values1. We are always talking science and experiments. We have
included our experimental framework in Section 5.3, which you can
test out as part of the migration kit. Secondly, you need to run the
experiments concurrently to the operating rhythm of the
organisation. And who is demonstrating the best operating rhythm
in organisations today?

For about two decades now, software engineering teams have
been experimenting with building software systems using an Agile
approach. The Agile manifesto outlined an agenda for how teams
trade off and prefer certain things over others. The inception was
brilliant; it did not mandate the processes but the mindset. There
have been many flavours of Agile invented but the truth is, most
companies come up with a hybrid approach that best suits their
own circumstances. However, there is a common thread throughout
the vast majority of them ... sprints.

In summary, a sprint is a short cycle whereby value is
delivered in each iteration throughout the project. This is in

1Scientific but not heartless.
62



contrast with traditional waterfall methods that are much longer
and deliver only at the end of the project. We dislike the term sprint
as it implies we are sprinting like a 100m race, but sprinting is not
sustainable over long periods of time. We prefer to call them
iterations and talk about sustainable pace by demonstrating
urgency, but not being rushed.

Agile has proven quite popular as it can reduce the risk in
software projects when the team is fluent and well-rehearsed in
their craft. Whilst software engineers cannot claim to be the
inventors of this mind set, Agile is beginning to influence the wider
business to consider the role of using iterations for more than just
software projects. For example, the Lean startup methodology, uses
build-measure-learn cycles to gain traction for a product/market
fit. Another way to think about it, is to think of an iteration like a
heart beat. If you are doing long waterfall projects, the heart beat
will be slow and so will your business. If you are able to do shorter
iterations for projects, the heart beat will be quicker and this will
give your business a greater number of opportunities to evolve.
3.2. Community
Right from the start, our company mission for Codebots was to help
our community build better software.

Did you know that the original definition of the word
‘company’, is derived from the Latin words ‘com’, meaning
together, and ‘panis’, meaning bread? Merchants would come

63



together, share stories, break bread and do business. They were
communities! But during the industrial revolution when the
priority was mass production and we moved to a centralised
business model, companies started to behave more like machines
than communities. Each employee was a small link in a chain,
optimised for efficiency but with little opportunity for individual
creativity and contribution.

Today, we have an unprecedented collision of new
technology, AI, VR, blockchain, business agility and the list goes on.
We believe that these awesome technologies have the power to set
humans free from the repetitive factory mindset. By harnessing the
power of codebots, our community can become creators and
inventors again, letting the technology do the heavy lifting. But
this can only happen if we shift away from thinking about
organisations as machines, to organisations as communities.

This tactic is based on the core idea that every person that
interacts with your organisation is a member of your community.
The metaphor of an onion [10] can be used to visualise the different
layers of membership in any business or for any given project as
illustrated in Figure 3.4. The people at the core are those whose
contribution is the greatest and who are the most invested in the
mission, vision and values (founders, investors and leaders of the
company). They influence and inspire the next layer of team leaders
and employees, who in turn influence and inspire loyal partners and
customers, who then spread the word to our fans and followers.
64



Figure 3.4: Community onion

Rather than differentiating our employees from our
customers, we connect the dots and consider it a single community
experience, with different levels of contributions and experiences
within it. When you think about it in this manner, you are able to
set and shift the culture from the core. As long as the most invested
community members are aligned on the messaging of the mission
and their behaviour consistently reflects the values, it will be
echoed and embraced as you move outward through the layers. In
Section 5.4 we will explain how to apply the community onion to a
migration project as an activity within the migration kit.

We use tactic science + iterations to experiment with programs
that move individuals on the journey from awareness right through

65



to brand ambassador. By using community as a tactic each member
has the potential to become an advocate, not just of your technology
(which can always be copied) but of what you stand for, and they
identify with and take ownership of that vision. This builds an
invisible but impenetrable moat of good will, advocacy and genuine
affection around your business. Your community does not just use
your product, they are your product, and they will promote it to
their friends and colleagues, they will tap their networks to recruit
like-minded employees and they will voice the innovative ideas
that are key to driving a culture of continuous modernisation and
finding true software/people fit in the organisation.

As business management author, Patrick Lencioni [21] says, if
you can get all the people in an organisation rowing in the same
direction, you can dominate any industry, in any market, against
any competition, at any time. So why is it, that the one variable
that is often forgotten is the people?

In 2014, MIT Sloan Management Review, in collaboration
with Deloitte[23] surveyed more than 4,800 business executives,
managers and analysts from around the world and found that many
companies focus on technologies, without investing in
organisational capabilities that ensure their impact. They concluded
that many failures are because organisations did not change the
mindsets and processes, or build cultures that foster change.

The community tactic can be applied to any digital
transformation project. It begins by ensuring that those at the
66



centre of the onion are the most invested in making the change
e.g., CEO, CIO, project owners, are aligned and rowing in the same
direction on the core message and values. The next step is to take
the team on the journey, by getting the next layer of the onion
being the key stakeholders to understand and believe in the mission
of the project. Then they become the project ambassadors and will
rally the support of the outer layers of the team, who are ultimately
the end users of the software.

In this book we talk about the modernising of legacy systems
being both a technical and a cultural problem. By keeping people at
the centre of your strategy and having everyone rowing in the same
direction, it is possible to create the momentum and cultural shift
required for continuous modernisation by making a
software/people fit.
3.3. Microservices
A well-defined interface goes a long way to making great software.
One advantage of an interface is that it allows developers to
seperate the concerns of a program by modularising or making
components that take care of something. So, when another
developer comes along to use the code they need not be concerned
about what happens behind the interface but what the interface
provides. The interface will have some input via a request and some
output via a response. In modern web-based systems, this is
usually done via a web service of some description.

67



Microservices is an architectural style that was first discussed
at a workshop of software architects in 2011. The following year the
participants decided on microservices as the most appropriate
name. Microservices is a broad term used for different
characteristics of modern architectures that were discussed at the
workshop. They are summarised by Lewis and Fowler [22] as:
• Componentisation via Services,
• Organised around business capabilities,
• Products not projects,
• Smart endpoints and dumb pipes,
• Decentralised governance,
• Decentralised data management
• Infrastructure automation,
• Design for failure, and
• Evolutionary design.

This list is a mixture of both technical and organisational
characteristics. It is a big list and each item can be a book in itself;
actually, there are some great books on these worth a read [25]. For
the purposes of this book, we are going to simplify the definition of
microservices to be: microservices are composed of small
independent services that communicate over well-defined APIs. To
visualise the importance of what this means, we have provided a
68



diagram in Figure 3.5. The traditional monolith on the left is large
and very difficult to change. It is possible to customise a monolith
but history has shown that this is costly to update and hard to get a
good fit. A lot of monoliths come with everything and the kitchen
sink and the organisation usally only ends up using a portion of
what is available.

Figure 3.5: Microservices architecture
By breaking a monolith up into smaller microservices,

developers can work on and update smaller parts of the overall
project as they are loosely coupled with other microservices. This is
ine of the biggest attractions on why microservices have gained
popularity. For the non-techinical readers you can skip the rest of
this section and go onto the fog of war in Section 3.4. We are about

69



to get a bit nerdy and talk about the use of software patterns in the
target application. It’s safe to skip forward from here as you should
now have a broad understanding of why microservices can be more
benficial than a monolith.

All of our codebots use a similiar approach to microservices
and the architecture represents best practice. Some of the codebots
have some changes due to the frameworks they use, such as Spring
or the Entity framework, but they generally follow this approach.
The server-side is MVC-based with a service-tier and
datastore-tier. The controller-tier exposes web services as
endpoints. The business logic can be performed in-memory in the
service-tier, or using complex SQL in the database-tier and
possibly stored procedures as required. The client-side is also
MVC-based leaning towards a more thick client with the option to
do business logic in JavaScript too. The thick client approach can
lean towards hybrid mobile-apps with an offline capability opposed
to having the server-side do all the business logic work. The Double
MVC architecture is a flexible approach to microservices.

Are microservices the future of software architectures? In the
context of legacy systems, they are showing positive results as
changes to software are achievable within a reasonable amount of
time. There are a few pitfalls to watch out for like performance,
fail-over, security, enivironments, deployment pipelines, and the
like. But we are recommending the use of microservices as a skilled
team can make sure these potential pitfalls are addressed.
70



3.4. Fog of War
The fog of war is used in strategy computer games to hide part of
the map from the player. The player cannot see or lift the fog of
war until they have explored that area. And in some games, unless
there is an active unit within the area, the fog resettles and the
player loses visibility again. The idea is that this part of the game is
hidden from the player and it makes it more difficult to know
what’s going on. The best players lift the fog of war on their
strategic outcomes and increase their chances of winning the game.

This analogy can be used with your software ecosystem as
there are many occasions where there is a fog of war over what is
actually going on in the organisation. For example, as a legacy
system gets older, the technical debt increases and the ability to
maintain or improve it gets harder. This creates a fog around the
legacy system as it is harder to know what time and resources are
needed to make changes.

A different example of the fog of war is shadow IT ... the
dreaded shadow IT. Shadow IT is all of the applications, both
off-the-shelf or custom-built, that are introduced into the
ecosystem by lone wolf employees that are showing a little too
much initiative. So, unless you have complete knowledge of every
bit of software in your ecosystem (and I suggest that might be
impossible), you are dealing with a fog of war. The question is, how
do you lift it in a meaningful and sustainable way?

71



While doing research for this book, we interviewed Gary
Buck2 on this exact question. Most organisations will do an audit
and create a map of the eco-system, which will lift the fog of war.
The problem is that it’s just a brief moment in time. The map from
the audit becomes dated and it loses its usefulness and it is rarely
revisited or maintained. This means that the fog resettles back over
the software landscape and you lose visibility, which has a negative
impact on your business agility.

In a strategy computer game, there are a number of ways to
contend with the fog of war. Ideally, you would place an active unit
in the area of interest so that the fog of war is permanently lifted.
Another tactic, is to send out scouts to patrol the area at regular
intervals, but this can be a pain if the player cannot automate the
task as they will have to devote time to send them out on the patrol.
Well, it turns out that as part of the 3-phase strategy described at
the beginning of this chapter, we might just have a way to run
some similar tactics for our software ecosystem.

In phase 1 of the strategy, we will be migrating a legacy
system across to a new microservices architecture. During phase 2,
we are going to connect the new application via the services to
other applications and potentially create new applications as well.
Then in phase 3, we are going to migrate more of the legacy
systems to a microservices architecture. This 3 phase strategy is an

2Gary was the CIO of BHP for 20 years and is a very experienced practitioner. We
recommend checking out his book on the first 100 days of being a CIO [?].
72



excellent opportunity not only to lift the fog, but to place active
units to ensure that it is harder for the fog to resettle over the new
applications. Without spoiling some of the content for the next
section on modelling, and to use the anology so far, the model is
your active unit.

If we passed a developer 1.2 million lines of code from a
legacy system and asked a developer to modify it, they would most
likely look at us like we were insane. As depicted in Figure 3.6, we
pretty much just passed them a locked safe without any visibility or
instructions to what is inside. This is known as a black-box and
brings up all sorts of twitches and flashbacks in software teams.

Figure 3.6: The joys of black-box code

73



If we passed a developer 1.2 millions lines of code with some
documentation, they could attempt some changes but history has
shown us that it will likely fail or run over time and budget. If we
passed a developer 1.2 million lines of code with the requirements
backlog, user interface designs, the database schematic, and all the
reasoning behind the application and architecture with a connected
traceability matrix to tests, they would ask for a little time to study
it, but the likelihood that they could meaningfully update the code
has improved significantly.

Legacy systems are pretty much this. They are a black-box
where the fog has encompassed them completely and cannot be
lifted. With any extra knowledge about the application, the legacy
system is becoming a white-box and the fog is being lifted. Now
here is the trick: the model must become as important as the source
code. So, when the model and the source code are presented in
combination, humans can better understand and therefore they
have better knowledge. They are regaining control of the legacy
system through the knowledge that surrounds it and making the
legacy application more of a white-box.
3.5. Modelling
Models in software engineering are one of the most under utilised
and misunderstood technologies available today. Our industry has a
lot of hype around Artificial Intelligence (AI) with Machine
Learning (ML) and Natural Language Processing (NLP) showing

74



some amazing results. Other technologies such as Virtual
Reality (VR) and Augmented Reality (AR) are also getting a lot of
airtime but the little known area of Model-Driven
Engineering (MDE)3 is not getting much attention at all. Yet, in our
humble opinion, it is the most powerful technology of them all and
has the ability to be applied to any industry, sector, or solution and
create an order of magnitude improvement.

Before we start discussing the use of models, let’s quickly
address why MDE has received such little attention. Like AI, the
concepts of MDE have been around in some form or another since
the dawn of the modern computer. Yet, hardly anyone has heard of
it. Why? In die-hard modelling circles you will get different
passionate responses, but we are going to put forward our thoughts
that will hopefully shed some light on the situation.

We believe that academia has clouded the use of models with
so much complexity, that students of software engineering and
others simply don’t understand it enough to be able to apply it well.
And like high school where bad teachers can turn students from
subjects, the use of models has likewise been relegated to the back
of the queue. It has long been taught that models are only good for
critical systems like aircraft control systems or other safety critical

3Don’t get too hung up on the acronym used. You will come across other variations
in the literature like Model-Driven Software Development (MDSD) [33] and Model-
Based Testing (MBT) [32], but they all essentially just mean the use of models in
software engineering.

75



systems. This is not true. We must expand the horizon and look at
the use of models further than this.

By the end of this section, the use of models will be
demystified. It is the goal of this section to provide you with a good
understanding of how the use of models not only works from a
technical perspective, but how it can be applied in real-world
projects. So, as we journey deeper into our understanding, you will
be need to enter with an open mind. We are going to present 3 laws
to help your understanding and once you know them, you can make
informed decisions around the use of models with the best of them.

What is a model? A model is a simplification or
approximation of reality and hence will not reflect all of reality. The
important word here is all, the model cannot exactly represent
reality, and if it does, it is not longer a model. This is known as
Bonini’s Paradox [3], as a model of a complex system becomes more
complete, it becomes less understandable.

The paradox means that there will always be a gap between
the model and reality. This is the first law, a model is incomplete as
it cannot exactly match the thing it is modelling. How this gap is
managed is a key differentiator between different software
platforms. Later in this section, we will show you the implications
of this from both a business model and technical perspective.

The second law surrounds the meta-model. All hail the
meta-model! The meta-model describes what can be found in the
model. Once you control the meta-model, you have the power to
76



create any type of model imaginable. The meta-model is the layer
below the model. For example, in physics, an apple is made up from
atoms and there are 94 naturally occurring elements in the periodic
table. Each element in an atom is made up from protons, neutrons,
and electrons. The protons and neutrons are made from quarks.
And finally, string theorists believe the quarks and electrons are
made from tiny strings.

Figure 3.7: Layers in the physical world
As you can see from Figure 3.7, each layer is built from the

things in the layer below. This concept is the same for the
meta-model. The meta-model describes what can be built in the
model (or the layer above). If you are able to update and change the
meta-model, then you can create a model for the actual domain

77



that you are working on. This is the second law, control the
meta-model to fit the domain.

Let’s move onto the third law, making models useful. How do
you make models useful?

For a codebot, it uses the models to write code. Similar to the
way humans take requirements, understand them, and then write
code to fulfil the requirements. A codebot uses patterns in the
target application and writes code to those patterns based on the
model. To make a model useful like this, the model undergoes a
series of transformations. Broadly speaking, there are
Model-To-Model (M2M) and Model-To-Text (M2T)
transformations that can be applied to a model. The model can
either be text, diagram, or some combination of both to make a
hybrid model. It is really up to the team involved in the project to
decide what is the best approach for the model and the
transformations to come up with a solution.

The third law is particularly interesting when it comes to
legacy system migrations. A typical scenario when building a
software application and the subsequent legacy migration occurs
can be seen in Figure 1.1. In this project you can see that when it
comes to the legacy migration project at a later point in time, the
weak or lack of a connection between the model and the source
code severely hampers the project.

A real world example of this is security update for
applications. Imagine a security update has been posted and it
78



effect many of the software applications in your ecosystem. If they
were all connected using the models and transformations, the
developer would only need to apply the security update to the
transformations and then the codebots can write the update to as
many applications as required.

It is beyond the scope of this book to go any deeper into the
third law of making models useful. There are entire text books
devoted to this [33, 32]. The important take away is that through
the transformations, a codebot can write over 90% of the target
application that a human would typically have to write. In
summary, our three laws of modelling are:
• The first law states that models will always be incomplete.
• The second law states to control the meta-model to fit the

domain.
• The third law states to make the models useful through

transformations.
The first law recognises Bonini’s Paradox, as a model of a

complex system becomes more complete, it becomes less
understandable. So, there will always be a gap between the model
and reality. The second law is to control the meta-model. Once you
have control of the meta-model, it is possible to create all sorts of
cool models that fit the domain you are working on. And finally,
the third law is about making the models useful. For too many
years software engineers have created models that end up included

79



in the graveyard of business cases inside word documents. The
model has not been made useful and even worse, it becomes an
overhead as it needs to be updated and manually kept in sync with
any changes to the requirements. Eventually, the model is not
updated and becomes out of date and ignored.

A key differentiator of modelling platforms is how they deal
with these laws. Some platforms try to make the models complete
and you end up using models which are more complex than just
writing the code and harder to understand. Other platforms allow
code from the target application to be added to the model, or they
create a programming language so that more and more complex
algorithms can be included in the model. Again, the models end up
less understandable than actually just coding it.

The codebots approach is simple yet powerful in its approach
to the laws. We do not expect the codebots to write the complex
algorithms. We leave this up to the human. But we do not add it to
the model to make it overly complex. The codebots write their code
and commit it to a source repository and what they write looks like
a human has written. This means humans can pull the code from
the source repository and add their complex algorithms alongside
the bot written code. We truly like this approach as it also considers
the future of work and how we use technology. The bots do the
bulk of the project around the heavy lifting. The humans do the
complex algorithms and the creative parts of the projects.

80



3.6. Summary
In this chapter we have presented a strategy and five tactics to help
you on your continuous modernisation journey. The strategy is the
overarching plan. The tactics are specific actions undertaken as
part of the strategy.

The strategy is to draw on the lessons of the past and use
known military tactics to help you get underway on modernising
your legacy systems. There is probably one particular legacy system
that is holding back your organisation the most. But this legacy
system is a monolith and it tightly integrated with a number of
satellite legacy systems that surround the monolith. To eventually
modernise the monolith, you will first need to modernise the
surrounding satellite legacy systems. The strategy is to use a three
phase Blitzrieg.

In this scenario, Phase 1 is to modernise a satellite legacy
system, phase 2 is to map and connect to other systems, and phase 3
is to modernise the next satellite legacy system until the monolith
has been sufficiently isolated. For the smaller legacy systems you
can use the firecracker migration pattern (see Section 2.3) and for
the larger legacy systems like the monolith, you can use the
divide-and-conquer migration pattern (see Section 2.4).

While undertaking this strategy we recommend five tactics
that will enable you to gain momentum and reduce the costs
associated with the effort required to modernise a legacy system.

81



The five tactics are:
1. Use science to drive innovation at a pace in step with the

organisational rhythm.
2. Enable the community around your organisation. A strong

community builds a defendable moat around your organisation.
3. Build small loosely coupled microservice applications

emphasising a separation of concerns.
4. Increase the visibility and control of the entire software

ecosystem by lifting the fog of war.
5. Use models to capture knowledge and enable control

through the use of codebots to do the heavy lifting on software
projects.

Moving the needle in the direction of any of these tactics will
have an impact on the business agility of your organisation. It is
our intention to continuously modernise the Codebots platform to
help you achieve these tactics. That is quite a meta statement as we
are continuously modernising our platform so that you can
continuously modernise your organisation. We love everything
meta! Applying our recommended strategy and tactics to ourselves
is a great acid test. Some people call this eating your own dog food
but we prefer the saying drinking your own champagne.

82



4. Codebots

“Codebots? That’s cheating!” Leo Mylonas, before he became Codebots
Lead Engineer

83



Codebots are software robots that write code alongside your human
team. On average, they write over 90% of the code base that a
human usually has to write. In this chapter, we will unveil what a
codebot is and answer many of the frequently asked questions we
receive. Before we dive in too deep, let’s start with an easy one
about the name itself.

Codebots with a capital ‘C’ refers to the company name. You
will also see us use a lowercase codebots as well. We like to think of
codebots as a species like a fish. There are also specific types of
codebots like Javabot, Csharpbot, and Lampbot, like there are
specific types of fish like Giant Trevally, Black Marlin and Sail Fish.
So, we may refer to the codebots like a species or sometimes use the
word codebot as a general term to describe one of the codebots
themselves.

The next general question we usually get is, what does a
codebot look like? Besides some of the cool graphic designs our
team has done, a codebot is pure software so it cannot be seen like a
hardware device. However, software engineers usually draw
architectural diagrams to depict software. A codebot is a software
agent and uses architectures as described by some of the classic
textbooks on AI [17, 29]. For example, one of the simplest agent
architectures is the reactive architecture as seen in Figure 4.1. The
reactive architecture uses agent behaviours that are a simple
mapping between stimulus and response. The agent has no
decision-making skills. We used a reactive architecture while
84



experimenting on some of the early codebots before moving onto
more advanced agent architectures.

Figure 4.1: Reactive architecture
Even though the reactive architecture is quite simple, it does

facilitate discussions about some very important points. What are
the sensors or the input? What are the actuators or the output? And
what happens in the mapping to allow a codebot to write code? Now
this is where we start to demystify a codebot and start drawing
analogies to how we behave as humans. Effectively, we want a
codebot to be like another member of the team. When we work on
software projects with all humans, we communicate our ideas and
intentions of the software using many different approaches. No
doubt, we will communicate using voice in a meeting. We would

85



also use language in some email or in a requirements documents of
some description. And finally, our favourite, we would have some
super focused whiteboard sessions where we would draw some
diagrams and other cool things to represent the software project.

These are all candidates for the sensors or the input to the
codebot: diagrams, language, voice, and text. For example, through
the platform chat, you can ask a codebot to deploy the application
using something like ”@Lampbot, can you deploy the latest
version?”. Lampbot would confirm the order and then report back
once the application has been deployed. This text response back
from the codebot is an example of an actuator, or some output.
Another example of an actuator is the codebot writing some code.
Once the codebot completes writing its code, it commits it up to a
source code repository like Git1. If required, the humans can pull
the source code from the repository and add to it as required. This
leads into the next frequently asked question, what does the source
code look like? And for the more technically savvy, how is this
different from using a code generator?

Code generators have had a long history in computing and
can provoke some intense emotions in software engineers. One of
the main reasons that software engineers end up disliking code
generators is because what they produce can be a jumble of code
that they (or any human for that matter) cannot understand. This
creates a black-box and software engineers become frustrated as

1Git is a version-control system found at https://git-scm.com/
86

https://git-scm.com/


they cannot code the solution the way they would like, or
understand what is inside the black-box and why their code is
simply not working the way it should. As you could imagine, this
has created a stigma around the use of code generators. So much so,
that we have banned the word generator from use in our company.
And if you do use it, you have to put one dollar into the swear jar.

To help leave the mindset surrounding code generators in the
past, we have a simple rule that we follow; a codebot must write code
that looks like a human has written it. This leads to many benefits.
Firstly, the code written by a codebot becomes a white-box.
Software engineers can lift up the hood of the engine and
understand what is going on inside. This removes much of the
frustration from the use of code generators but more importantly,
makes the codebot a member of the team like the humans. So,
when a codebot writes some code for a project and commits to the
code repository, the humans can pull the code from the repository,
understand it, and add some code alongside the codebot as they
would do for any member of the team. And how is this achieved?
Figure 4.2 is some code that a codebot has written. As you can see,
it looks like a human has written it, however, if you look closer at
lines 521 and 522, this is what is called a protected region. You can
add code inside the protected region and the next time the codebots
writes its code, your code will be preserved.

On average, a codebot can write about 92% of the code base.
The other 8%, is written into protected regions. What is super

87



Figure 4.2: Protected regions

important to understand is that it is not expected that a codebot
will write the entire application for you. In some cases, it might be
possible, but it is not a goal of ours to have our codebots write all
the code. We want the humans to remain the masters of creativity
and to work on the truly complex parts of the application. Whilst
the codebots help with the heavy lifting of the application, when
they cannot write the code we need or are simply getting in the way
for some reason, we must have an escape clause so that we can
push the codebot to the side, and deliver the application within the
allocated time. This keeps the application as a white-box and we
use codebots for parts of the application that they are good at.
Think of it like any team member, some are good at certain things
but not so good at others.

88



We have now discussed some of the possible sensors and
actuators of the reactive architecture from Figure 4.1. For the
sensors, we can use diagrams, language, voice, and text as input to
a codebot. For the actuators, we can use the same, but the text
coming out can be code. So, what about the mapping in the reactive
architecture? The answer comes from some lesser-known areas of
software engineering that we believe holds the key to breaking the
cycle of legacy. The areas include Model-Driven
Engineering (MDE), Domain-Specific Language (DSL), and
Software Product Lines (SPL). There is some conceptual overlaps
from these areas, which contains the use of models. So, a codebot
uses a model as part of the mapping from sensors to actuators. The
model is the internal representation of the application that a
codebot understands. In Section 3.5, we dive deeper into the world
of models and advantages they bring to a software project.

Before we dive into the diagrams used by a codebot, let’s take
a quick look at some of the real-world results we have been able to
achieve so far. Back when the first author of this book was a PhD
student and producing research papers[5, 6, 7], there was always a
need to run experiments and collect data to support the theory. An
ideal experiment would have two teams, one using a codebot and
one using only traditional software development. The teams would
both work on the same application, over the same period of time,
and then compare the results. While this sounds like a great idea,
securing the resources, budget, and teams of relatively equal

89



experience was impossible for a lowly PhD student.
It was not until some years after graduating from the PhD

that we were finally able to conduct some experiments like this as
we had grown the company to a sufficient size that we could afford
the resources, budget, and teams. The experiment we ran was to
have a software team work on a problem that was presented by an
organisation. The team would then work on the solution for 1 week
(5 business days) and then present the results. The organisation
was then asked to fill out a survey to compare the results for how
long they believed it would have taken them internally to complete.
The results were very promising with the survey respondents
giving an average of 8.3 weeks for what we were able to achieve in a
week. The results from the Codebots field trials and the survey can
found in B.
4.1. State and Behaviour
Since the dawn of computing, software applications have generally
be divided into state and behaviour. It is a good, broad approach to
thinking about a software application. The state of an application is the
data and the behaviour is what we do with it. The importance of data
for modern businesses can not be over emphasised. Data is so many
things, including the collective knowledge of the organisation. And
when data is hidden away in legacy systems like old databases and
spreadsheets, the ability for the organisation to access that
knowledge to make informed decisions is severely hampered.

90



Over the next three sections we are going to look at the
diagrams we generally use for a codebot. Each software application
has one model which is made up of many diagrams2. You can think
of the diagrams like views or windows into parts of the model. The
diagrams are how we represent the state and behaviour of a
software application. In Section 4.2 we look at the entity diagram,
which is the classic data model, but there are ways to add behaviour
that simplify the overall model. In Section 4.3 we look at the UI
diagram and how you can use it to add in some behaviours. And
finally in Section 4.4 we examine the security diagram and how you
can lock down and secure your application.

Before we dive into the diagrams there is one last point on the
diagrams we want to cover. For some software applications these
diagrams are not the ones you will want to use. The three diagrams
we are presenting next are good for some codebots, but not all. We
have built codebots that use a completely different diagraming
approach. This is important to acknowledge because much of the
mantra that we discussed in Section 3.5 on modelling, was centred
on the three laws with the ability to start small and create solutions
for specific domains. So, following this thought process, there will
be some domains that do not suit our standard three diagrams. We
have built the Codebots platform to be able to support different
diagrams in the future.

2There is one model for each application. A model can have one or more diagrams.
This is our definition of the relationship between a model and a diagram.

91



4.2. Entity Diagram
This is the classic diagram that all new students to software are
taught and it has gone by many names, including the class diagram
or the entity-relationship diagram. Figure 4.3 shows the codebots
version of this type of diagram and is something you will become
very familiar with on the platform.

Figure 4.3: Entity diagram

Teaching you how to build a classic database schema is
beyond the scope of this book and there are plenty of great
resources available. If you have not read it, we recommend this
book from 1978 [18] as is still relevant today. It illustrates the
science and art of data modelling and contains a great discussion on
92



the inherent problems and nature of information systems. So, we
will assume that you are comfortable with building a database
schema from here. The terminology we use throughout will be
familiar and includes entities, attributes, validators, and
relationships.

Our entity diagram goes a little further than the classic types
and allows the modeller to connect the entities to parts of the UI
and Security diagrams. For example, an entity may be part of a
workflow and that entity would then move through the workflow in
the target application. To achieve this, behaviours can be added to
the entity as seen in Figure 4.4. The purple rectangle embedded
under the attributes on the entity represents the behaviour.

Figure 4.4: Configuring a behaviour with an entity

93



4.3. User Interface (UI) Diagram
This diagram represents the UI of the application and provides a
way to show a high-level User Experience (UX) map of the
application. To draw a comparison, you may be familiar with
products like Adobe XD3 or InVision4; these are hot-spotting
frameworks where a designer can use graphics with hotspots to
simulate what the final application may look like. It is our vision
for the UI diagram to allow designers to rapidly prototype their
designs like these other products, but to be able to have a codebot
write the full-stack application instead of a click-through
prototype. In this section we will be covering the various
functionalities of the UI diagram and how it can be connected to
entities and switch on behaviours to get advanced functionality.

Figure 4.5 is an example of a UI diagram. Once you have the
diagram open, you have 5 different levels that you can work on. The
levels are pages, tiles, views, components, and elements. The
relationship between them is pretty straightforward to remember.
A page can have many tiles, a tile can have many views, a view can
have many components, and components can have many elements.
Pages are the different URLs of the application and tiles are the
various areas found on the page. For the developers, tiles are like
microservices and how functionality is grouped and delivered on a
page.

3Adobe XD can be found at https://www.adobe.com/au/products/xd.html
4InVision can be found at https://www.invisionapp.com/

94

https://www.adobe.com/au/products/xd.html
https://www.invisionapp.com/


Figure 4.5: UI diagram

To use some of the behaviours of a codebot (see Appendix C
for the list of behaviours) you drag a tile onto a page. For example,
one of the most popular behaviours is the forms behaviour and it
can be used for surveys and other ways to capture data. The
modeller drags the forms tile onto the page and configures the
related entity. This is all that needs to be done to then deliver this
complex behaviour into the target application.

Further to these tiles, there are ways to customise the target
application. There is a custom tile, view, component, and element.
The modeller can add a custom object on any level and the codebot
will put all of the code in place and then a developer can go to the
source code and customise the application how they like. This is a

95



really neat feature because it means that on any level or point in
time you can create something custom to deliver a project.
4.4. Security Diagram
The security diagram is the last of the three diagrams and by no
means the least important. Your ability to control access to the data
and the application is paramount. The security diagram is split into
three sections for Authentication, Authorisation, and
Auditing (AAA). Authentication is how the user is verified.
Authorisation is what tasks or data the user is allow to access.
Auditing, sometimes referred to as Accounting, is keeping track of
who does what so that it can be measured or forensics can take
place if a suspected breach occurs.

In Figure 4.6, you can see the Authorisation matrix used for
an application. On the left-hand side, or the rows, are a list of the
entities. At the top, or the columns, are the user groups configured
for the application. The modeller can then click in the matrix to
turn the access on and off for the various user groups to that entity
for the standard Create/Read/Update/Delete (CRUD) endpoints. For
example, the modeller can grant access to the read API endpoint for
a user group but not the ability to create, update, or delete. This
level of control for the modeller gives them excellent control over
the security of the application.

96



Figure 4.6: Security diagram

4.5. Development Target
To be adopted by software engineers and designers, a codebot must
provide a means to leverage the software patterns and architectural
styles that are relevant to the organisation, instead of those
proscribed by black-box tools without any ability to adapt. For
example, an organisation may prefer to use the .Net framework
coupled with the React JavaScript framework for the UI. This means
that we must be able to create a codebot to support this
development target. In this section, we will explain how a codebot
can evolve to support new technologies and how this process
unfolds.

97



For those unfamiliar with programming, software engineers
use patterns in the application to create solutions. Patterns
[12, 11, 2] are well-known and they have been written about for
many decades. Some of the most well-used patterns such as Model
View Controller (MVC) were first proposed in 1978 [26] and are still
prevalent today. In danger of over simplifying, a software
architecture is the combination and use of these patterns in the
application. You can think of patterns like different types of lego
blocks you can add together to make something. Most software
engineers have a preference for certain patterns over others and
there are entire conferences dedicated to learning new ways of
building software. Some of the more recent architectures like
microservices are discussed in Section 3.3.

In this section, we describe how to set out a process to build a
codebot. While other organisations will not tell you their inner
workings because they believe this is their intellectual property, we
believe it is important that everyone in the community knows how
to do this so you are armed with the knowledge on building your
own codebots. This means that any organisation can satisfy their
unique technology requirements. For example, we have a codebot
called Javabot that uses the popular Spring and Hibernate
frameworks, but if you did not want to use Spring and use J2EE
instead, then you will have a path to follow to achieve this.

There are three flowchart diagrams coming up over the next
few pages. These diagrams are the process we follow to create and
98



update a codebot. Starting with Figure 4.8, there is a Start Iteration
and End Iteration that represent the beginning and end of an Agile
sprint. Recall that Codebots is complimentary to Agile and other
software development methodologies and not a replacement. The
first question in the flowchart is Can the bot write the code required for
the user story? At the beginning of any new codebot, the answer will
always be no. This means that we write the code as a reference
implementation with the team implementing the user story just like
they usually would. This simple first step of writing the reference
implementation in this way has many far-reaching consequences
that we will dive deeper into at the end of this section, but for the
moment let’s continue around the flow chart. The next step is to
train the bot and check the code matches the reference
implementation. Once it matches the references implementation,
we build a model, get the bot to write the code, test the target
application satisfies the requirement, and end the iteration.

It may seem counter-intuitive to build the reference
implementation first, but this is done with the knowledge that
many applications of this technology stack will be built. So how do
you know when there is a return on investment for the effort it
takes to build a codebot compared to just writing the application?
There are some formula’s you can use like the ones used in
Software Product Lines [4], though in our experience we make
productivity gains on building the first application in the family, let
alone the many that will follow. It is also important to note that

99



Figure 4.7: Evolving a codebot

building your own codebot like this is only available through our
premium product offerings and this is how we build a codebot
specific to a customers unique technology requirements.

We often get asked the questions about the use of Machine
Learning when we train the codebot. The answer at the moment is
that we do not use Machine Learning (ML) for this yet. Using ML to
solve this part of the overall problem is notoriously difficult. For
example, some research coming out of University of Cambridge and
Microsoft [1] has been able to use ML to solve problems of difficulty
comparable to the simplest problems on programming competition
websites. While this research is excellent steps forward, it is still a
long way from building full-stack applications like a codebot. The
100



codebots use AI in different parts of their internal technology stack
as discussed at the beginning of this chapter. But will we be using
ML for this in the future? We can’t reveal all our secrets but we
would suggest that the solution is not quite what you may think.

After a few iterations of evolving a codebot, some user stories
will be presented that cover the path shown in Figure 4.7. This
occurs when the answer is yes to Can the bot write the code required
for the user story? What we have found is that there are reoccurring
requirements that are found across different parts of the
organisation. For example, it is common to want to survey or
present some questions to end users to collect data of some
description. This is so common that it is one of the first behaviours
that we recommend training a codebot on. We call this the forms
behaviour and we have rarely delivered a project without using it.
The forms behaviour is also very handy for migrating from old PDFs
and this is covered in Section 5.10 of the migration kit.

The third and final flowchart about evolving a codebot for a
development target is shown in Figure 4.9 and this one is our
favourite. You will notice that it is the superset of the other two
flowcharts and includes an extra question if the bot cannot write
the code for the use story; Is it warranted to train the bot to support this
in the future? If the answer is yes, then you follow the path described
above. If the answer is no, then the code is written by a developer in a
protected region. This path is the other 8% on average that is not
written by a codebot and has two very important consequences.

101



Figure 4.8: The bot can write all of the target application

Firstly, at any point in the software development lifecycle, if the
codebot cannot do the work for you, you can push the codebot to
the side and return to traditional software development. This
means that using a codebot will always be faster because the base
case is that you build the software like you normally would.
Secondly, we love the implications this has on the future of work. A
codebot is not here to replace us but to do the heavy lifting, leaving
us to the truly complex and creative parts of the solution.

You will have noticed that at no point in this section we have
discussed or shown a single line of code and that is for good reason.
It is inconsequential what the development target is. As long as the
development target uses patterns, which all software applications
102



Figure 4.9: A human adds in extra code to finish the requirement

do, then a codebot can be built for that development target. At the
heart of what we are doing here is making time an ally of the
organisation, and not an enemy. Software teams are always on a
never-ending deadline from one iteration to the next and this can

103



have some unintended consequences. People become rushed
because they feel they do not have enough time. But we can make
time an ally of the organisation by evolving a codebot naturally
alongside the software teams. As time progresses forward, and it
inevitably will, your codebot will continue to improve if you follow
the process. This is what we have observed and there are a number
of other benefits that we will discuss now to round out this section.

Imagine yourself in the future where your software team has
gone through several iterations and the codebot has evolved some
pretty cool behaviours. You have made sure that the security is
tight and paid attention to your Authentication, Authorisation, and
Auditing (AAA). Authorisation has been reinforced with two-factor,
authorisation includes security schemes for tighter control, and
auditing provides a log of activity to enable forensics on user
activity. You are feeling pretty good that you have the security
bases covered, but an alert is sent out from a vendor with a security
vulnerability. Traditionally, you would need to check all of the
different applications across the eco-system to see if they are
vulnerable, and if they are, update each application individually to
fix the vulnerability. But in this future state you have a codebot on
your team. You would only need to make the changes to a single
reference implementation and train the codebot once. The codebot
could then write to as many applications as required to fix the
vulnerability; it could be hundreds of applications. By using a
codebot you have a consistent architecture and you can deal with
104



wide-reaching problems such as security in a more timely manner.
This is only possible because you control the development target
and are masters of your own destiny and not at the mercy of a
third-party vendor.

Another benefit worth addressing around consistency is how
the codebots write code using patterns in the development target.
Consistent use of patterns across a code base can go a long way to
reducing technical debt. What happens over the life of a project is
different software engineers come and go from a project and they
bring in their preference to how patterns should be used to solve
problems. Usually, and unwittingly, the different implementations
of the patterns end up being in conflict and the developers back
themselves into a corner. Have you ever been told by a software
team that there is a delay because of a technical issue? Well, this
could be one of the reasons: that the team is not able to get the
architecture to work because of some conflicts in the patterns they
are using. We must make the consistent use of patterns an
important practice to minimise technical debt. From an
architectural viewpoint, a codebot is an opportunity to ensure the
consistent use of patterns across the code base and this has a
positive flow-on effect to the maintainability of the application.

105



4.6. Testing Target
The development target is only half of the picture; the other half is
the testing target. The use of codebots can extend much further
than just development and in this section we are going to look at
the benefits with testing. Think of it like owning a Ferrari; do you
want to drive around just in first gear? We would say not. The good
news is that a codebot writes the testing target as well. Before we
get into the specifics of this, let’s take a broader look at the role of
testing in a software project.

The ultimate insight for any stakeholder in a software project
is knowing that the software quality is high and you can sleep
soundly at night. To achieve this, there is a simple yet powerful
approach that can provide this assurance. The answer is to use a
traceability matrix. A testing and requirements traceability matrix is
shown in Figure 4.10. The columns are the requirements and the
rows are the tests. This makes it possible to specify which tests
relate to which requirements.

This traceability matrix leads into all sorts of great metrics
about the project and helps answer important questions. For
example, how many requirements from the backlog do not have
tests before a release? Or even more simple, how many tests are
currently passing? Knowing the answers to these questions can
significantly reduce the risk of releasing poor quality software.
Testing is a key contributor to quality and inadequate testing can

106



Figure 4.10: Testing and requirements traceability matrix

leave an organisation exposed to unnecessary risk. Testing is used
to help confirm whether a System Under Test (SUT) is behaving as
expected and a traceability matrix goes a long way to support this.

There are many challenges with testing that make it difficult
to manage. For any non-trivially sized system, it is impossible to
have a SUT 100% tested. The state explosion problem means that
there are too many combinations to test and current computing
power means that you would be waiting a very long time to test
them all. So, testing of a system must be declared adequate for an
organisation and this is what makes it difficult to manage; i.e. what
is considered adequate? There is no such thing as fully tested; it is a
myth.

107



This makes testing a sliding scale. Smaller organisations that
produce simple web applications for the mass market can move the
testing slider to the low end of coverage (if any). If faults or bugs
make it through to production, the consequences are minor. On the
other hand, larger organisations that produce critical applications
must move the testing slider to the higher (more rigorous) end of
coverage as the consequences of errors are severe. On a traceability
matrix, you can start looking at the density of tests around
requirements and also introduce code coverage tools to gain further
insight.

The best approach to testing is a layered approach similar to
the way security is implemented. Having one layer of security is
risky and it’s better to have several layers of defence. If one layer is
compromised then there are still more layers before a breach occurs.
A more secure system is subsequently achieved. A similarly layered
approach is best for testing. In general, the 4 layers of testing are
unit, integration, system and User Acceptance Testing (UAT). The
better test systems use relationships and Continuous
Integration (CI) to minimise the number of manual tasks.

Before we look at some of the techniques we use for a codebot
to write tests, we want to draw your attention back to how the
development target is built as described in Section 4.5. The testing
target follows the same process alongside the development target;
i.e. we get the codebots to write their own tests to ensure the
development target works as expected. In addition, we use the
108



same model for testing as we do for development. Theorists argue
that this scenario runs into a lack of independence, but in our
experience using the 4 layers of testing is more than enough to
mitigate this risk.

Further to the codebots writing tests, it is possible to add in
extra tests that cover more scenarios. Recall that the codebots write
some but not all of the target application. So, for the extra code that
is added by the human software engineer, you can add in extra tests
as can be seen in Figure 4.11. We use scratch, a programming
language used to teach children to code, which means adding tests
just got a whole lot easier.

Figure 4.11: Build a test using scratch

109



For the rest of this section we are going to get a little more
technical, for the non-techie readers you can skip forward to the
chapter summary if you like. The rest of the section is going to look
at how the codebots write their tests. Like the development target,
we use a subset of MDE but from a research area called
Model-Based Testing (MBT).

MBT differs from classical testing techniques as it uses a
model to drive test generation. The potential benefits of MBT
include higher fault detection, reduced testing cost and time,
improved test quality, requirements defect detection, traceability
and requirements evolution. The process is shown in Figure 4.12.
The test case generator uses the model to generate test cases. The
test script generator uses the test cases to generate test scripts. An
adapter can be used to concretise the tests scripts and a test
execution tool is used to execute the tests against the SUT.

If you are interested in this area, it is recommended that you
read the book from Utting and Legeard [32]. We use a slight
variation of the process shown in Figure 4.12, but it is generally
very close. We have been able to apply the process to a number of
different test frameworks such as Cucumber (https://cucumber.io)
and SpecFlow (https://specflow.org). Importantly, the testing
evolves alongside the development target as described during the
last section in Figure 4.9, but now we will draw your attention to
the question; does the target application satisfy the story requirements?
The testing target must be used to answer this. Green means yes!
110

https://cucumber.io
https://specflow.org


Figure 4.12: Model-based testing process adapted from [32]

111



4.7. Summary
Codebots offer a number of benefits for an organisation. They
deliver quality software at speed and allow reuse at scale. The
Codebots field trials show teams working with a codebot 8.3 times
faster than teams without. Furthermore, the behaviours can be
reused many times with updates and improvements able to be
rolled out at scale across multiple applications. These benefits alone
make for a good business case and a return on investment by
reducing the total cost of ownership for a program of work.

Many organisations are struggling to find skilled software
teams as there is a world wide shortage. Some organisations look at
moving their projects off-shore but this raises a whole set of extra
challenges. Ideally, people want to work with an internal or local
team that are in their timezone and speak their language. Bringing
a codebot into your team gives you the best tools in the shed. This
means that you can do more with your current resources as the
codebot will do a lot of the heavy lifting for a project. Or, you can
look at reducing the amount of resources needed for a project and
redistribute them onto other work.

A codebot writes to a target application and we split this into
the development target and the testing target. The development
target can be any technology stack and we have built a codebot for
many different programming languages and frameworks. As long
as there are patterns in the target application, then a codebot can

112



use those patterns to write vast amounts of the target source code.
Codebots are best at projects where there is a large amount of
source code where patterns repeat. For example, web-based
systems and other large code bases are good candidates. If the code
base is very customised for that particular scenario, then a codebot
may not be suitable to use. Some examples of this are embedded
systems and small projects with very focused goals.

Our codebots are not going to be turning into Skynet from the
Terminator. You’d be surprised how many times this comes up
when people first think about bots that code. The reason that we
are confident with this statement is that we have a simple rule; a
codebot is only allowed to write a target application and it is not allowed to
write its own code. This rule circumvents future issues around any
sort of runaway intelligence caused by the codebot updating its own
code. This might sound like science fiction, but there are already
movements across the globe about using AI responsibly and we
want to make sure we do too.

The future development for the codebots is exciting. We are
going to continue to expand out their sensors and actuators making
them more like any member of the team. We are also moving
forward into a position where you can create your own codebot. At
the moment, you can either use one of the existing codebots like
Springbot or Angularbot, or you can ask us to build a new codebot
for you. In the future, we want you to be able to create and train
your own codebot. This would allow a far better match for your

113



technology stack and it would also mean you could create your own
new behaviours. Have a look in Appnedix C for some of the
behaviours we have built so far. But I am sure that the people in our
community will come up with ones that we haven’t even thought of
yet.

114



5. Migration Kit
The migration kit is a set of activities that can be used to
continuously modernise your organisation. There are four stages
that span both the scope and development stages of the project
lifecycle and this is shown in Figure 5.1.

Figure 5.1: Four stages of the migration kit
The first stage is to understand the project. In this stage the

team and the stakeholders gather the knowledge, reverse engineer
requirements, and experiments to better understand the project.
The second stage is to prepare the project. In this stage the layers of
the community and decision making is mapped, expectations are
managed, and stories are estimated. The third stage is to Migrate
the project. In this stage the migration activities are described for
databases, spreadsheets, and PDF forms. Finally, the Modernise
stage is used to prepare for success in the future.

115



5.1. How to Use this Kit
Summary
A summary of the activity and why it is being applied. The how is
covered in the Steps.
Level of difficulty
There are three levels of difficulty: Easy, Moderate and Hard. Easy
activities don’t always mean quick activities, but they are ones that
should be quick to pick up and add value to a project. Moderate ones
tend to need some pre-planning while Hard normally needs
everyone to be on point for the activity. The fewer interruptions the
better.
Before you Start
Each activity normally has a few requirements that need to be
satisfied before you can start. Normally other activities flow into
ones later in the process.
Stage
There are four stages that an activity will be categorised in:
Understand, Prepare, Migrate and Modernise. The Understand and
Prepare activities happen during scope. Migrate and Modernise
activities happen during development. There is some overlap of
activities and you can do the stages in staggered formation if
needed.
Suggested time
This is how long the activity should take.

116



Participants
The participants of each stage vary depending on who is needed for
each task. They include:
Product Owner - The main contact for the project.
Business Analyst - The domain expert that understands both the
business and how to integrate with technology.
Squad lead - The scrum master of the project.
UX Designer - All designers on the project.
Web Engineer - The software engineer developing the target
application.
Tools Engineer - The software developer testing the target
application and improving tooling.
Account manager - The account manager for the project.
Stakeholders - Any members of the team that has a say in the
product.
Users - Target user groups who are from the target demographic.
Materials
These are handy materials to be used for this activity.
Steps
Step-by-step instructions to follow for the activity. Some of the
activities will have detailed steps and others will be more of a guide.
Justification
The justification contains any background, knowledge and
references to further reinforce why this activity is important. The
justification could be quite long or short depending on the activity.

117



5.2. Reverse Engineering Requirements
Summary
The stories backlog is a list of requirements detailing the
functionality of an application. Creating and maintaining the
stories backlog is one of the most important tasks that a team does
throughout the software lifecycle. It provides everyone involved in
the project a list of what is required, how important each
requirement is, what users are involved in it, and what platform it
belongs on. The backlog is the basis for how the project is
estimated and the roadmap constructed. It is broken down into
epics and user stories. The epics are large groupings of
functionality while the stories are the small individual tasks the
user performs on the product.
Level of difficulty
Moderate
Before you Start
This is one of the most important migration kit activities as it sets
the stage for success. This activity is traditionally performed by a
business analyst. Find as many domain experts on the legacy
system as possible and any documentation that might give clues to
the intention of the application. If the domain expert cannot be
found, then someone must become the domain expert. This can be
very much a computer forensics activity, so get your detective hat
on.

118



Stage
Understand
Suggested time
Unknown, hopefully less than the maximum time allowed for an
iteration (usually 2 weeks).
Participants
Business Analyst , Squad lead, and anyone else with knowledge of
the legacy system.
Materials
Codebots
Jira or any other issue tracking software that you use (optional)
Steps
1
Decide on the location where the backlog of requirements will be
kept. The backlog should become the single source of truth for the
requirements of the application. For some organisations, they may
already have a policy on this like inside Jira 1. Alternatively, you can
use the Codebots platform as we provide a planning section as
shown in Figure 5.2. Codebots can be used in isolation or in
combination with issue tracking software such as Jira.
2
Create a new project in Codebots and fill out the basics of the
product, or select a previously migrated project.

1https://www.atlassian.com/software/jira. We love you Jira.
119

https://www.atlassian.com/software/jira


3
Gather all your research and idea development along with
assumptions and start turning them into epics. These epics
shouldn’t be too general and sometimes large features should be
broken down further.
An epic is a description of a coarse-grained requirement in a story
form. It may represent a theme, which can be used to categorise a
bunch of related User Stories. epics are created and maintained
within the Codebots project. An epic may look something like:
As a [type of user] I want to [do some action] so that [reason for action]
4
Once you have the epics in place, start breaking them down into the
stories. A user story is a description of a fine-grained requirement.
Each user story belongs to exactly one epic and describes part of the
epic in more detail. A user story is the unit of delivery for
iterations, so by definition a user story must be sufficiently small to
deliver in a single iteration. A user story may look something like:
As a [type of user] like [persona] at [environment]. I want to [do
something] using [device] so that [reason for task]. This will [user
goal].
5
Before the project is able to go to development, the stories backlog
needs to be finalised and all information added. The more the
better, as it keeps accountability of the project moving ahead.

120



Figure 5.2: Plan UI

Justification
The role of a great business analyst combines both the art and
science of understanding a domain. It is beyond the scope of this
book to delve into the depths of this world as many have before us.
In the academic world this is sometimes referred to as
requirements elicitation and in the agile world as requirements
gathering. As you can get a feel for [19, 13], this is a very widely
discussed and written about topic.

Without over-simplifying this field, there are a few main
points we would like to address. First and foremost, keep it simple.
It is easy to get carried away with the complexity of requirements
gathering and try to do too much too early. Modern business

121



analysts are embracing the ethos of methodologies such as Lean
thinking, where it is the MVP that is the first milestone to be
achieved. That is a good way to think about it, however it needs to
be applied in the context of legacy systems i.e., what is the
minimum set of requirements needed to satisfy the user stories for
the people using the legacy system. By setting the priorities of the
user stories (requirements) and engaging with the people on the
project early, you can carve out the MVP of the legacy migration
project. In Chapter 2, we covered a few scenarios on how to deal
with legacy systems. We looked at the firecracker migration pattern
(see Figure 2.3) and the divide-and-conquer migration pattern (see
Figure 2.4). Both of these should fire up your imagination on how
to tackle the legacy system.

It is also worth revisiting some of the tactics we laid out in
Chapter 3, especially the use of models. The insanity of legacy
systems is that the cycle keeps repeating itself. When we rewrite an
application or deploy a new off-the-shelf application we expect a
different result, but we are simply creating the new legacy system
of tomorrow and the cycle repeats. However, if we are able to make
the requirements (the knowledge) of the application as important
as the application itself, the next time we come to the point that we
need to change the application to better fit the people using it, then
we are already on the front foot because the whole idea of reverse
engineering the requirements is a mute point. You will already have
them.
122



5.3. Experimental Framework
Summary
There are many different testing frameworks and cool tools that are
readily available. It is not our intention to reinvent the wheel and
we encourage you to explore and choose a system that works for
your organisation. The steps in this activity will guide you in
planning, performing, measuring and acting on an experiment The
important point is not which framework you choose, but that you
embrace an experimental mindset and encourage an investigative
culture within your team to help optimise business processes and
projects.
Level of difficulty
Moderate
Before you Start
One of the best times to identify problems and have ideas is when
you are talking to team members about the challenges that they are
facing. Collecting both qualitative and quantitative data that
supports the problem you want to solve is useful when pitching an
experiment to other stakeholders.
Stage
Can be applied to all stages
Suggested time
The activity of setting up an experiment depends on the complexity
and number of people involved but often it will take a couple of

123



hours to a couple of days, depending on the knowledge gathering
required.
Participants
All stakeholders and users can (and should) be involved in
experimentation but not all at once! Keep your experiments limited
to the participants who can add the most value.
Materials
Whiteboard.
Steps
1
Understand the problem. We call this phase of the process,
discovery. It’s time to observe, ask lots of questions, i.e. the 5 Whys
[31] and dig into the historical data that you already have like
burn-down charts or platform analytics. Interview the people
closest to the problem, quiz them on their current processes and
carefully map out their user journey so that you’re ready for the
next step.
2
Develop a hypothesis. Once you have analysed the problem, you
must identify a solution. This is the really fun part as it involves
brainstorming ideas for your potential hypothesis statement. A
hypothesis is a prediction that you create prior to running an
experiment. A good hypothesis makes it clear what it is you are
validating or invalidating. A common format is: If [cause], then
[effect], because [rationale]. Remember that there are no bad ideas.
124



Focus on nurturing a collaborative environment and looking at the
problem from all angles based on the knowledge that you collected
in the first step.
3
Plan the experiment. Now that the hypothesis is ready to test, you
need to identify the most appropriate solution for the problem and
create a strategy to test it. We call this the Implementation Plan
and it requires that you decide: who is in charge; who is involved;
the duration; identify the metrics to track/measure the experiment;
and how the experiment will be implemented.
4
Collect the data. The main difference between a well-formulated
hypothesis and a guess is, data. In the previous step you defined
how to measure the experiment. It could be measured in money,
time, community satisfaction, or another critical metric. Whatever
you choose, now is the time to collect the data that defines a clear
criteria for success and failure. And remember, failure should not
be feared; it’s all part of the learning.
5
Make a decision. At the end of the experiment you will analyse and
interpret the data to determine if the experiment was successful.
You can use the results to create new hypotheses or pivot the
experiment to explore new solutions. Just make sure the whole
process is documented and available for others in the company to
view.

125



Justification
It’s probably no surprise, given that one of our core values is
Scientific but not heartless, that we are big fans of the scientific
method, a problem-solving approach at the core of all sciences. We
have also been influenced by the Lean Startup which is about
running a lot of small experiments with a focus on metrics. A
common misinterpretation of the Lean Startup’s build, measure,
learn feedback loop, is that you should start with build. We always
start with learn as it encourages the team to think through and
understand what they’re trying to learn before they start building.
That way you’re building to learn, not just building to build. In
Figure 5.3, we have included an example of a simple framework as a
good starting point for your experiments.

Figure 5.3: A simple framework to get started

126



5.4. Community Onion
Summary
The purpose of this activity is to align on purpose and assign layers
of responsibility as illustrated in Figure 5.4.

Figure 5.4: Project team community onion

Compared to Figure 3.4, the project team community onion is
focused on the four levels of project participation, determined by
whether a team member is making strategic, tactical, operational or
user decisions. The activity ensures that those at the core of the
onion who are most invested in making the change, are aligned on
the mission and the vision of the project. Once this is established,
it’s purpose is to empower the project leaders and influencers to

127



plan how the project will take shape. When these key stakeholders
understand and believe in the mission and have influence over the
project scope and resources, they are more willing to commit to a
product roadmap. Essentially they become project ambassadors for
the operational team members, who are responsible for what
actually gets built. With full visibility as to why it is happening in
the first place and how it’s going to happen, the main project team
is empowered to create exactly what the end-user requires and rally
their support for the final solution. Two-way communication
between end-user and all levels of decision making is important
throughout the project to create the technical and cultural shift that
ultimately results in finding software/people fit.
Level of difficulty
Easy to start, however ongoing effort is required to realise positive,
long-term benefits.
Before you Start
The person who is responsible for instigating the project needs to
the mission, the vision and the values that will underpin the project
as it currently stands and bring these to the first session.
Stage
Prepare
Stage
Plan
Suggested time
The duration of this activity will be around two hours, plus regular
128



ceremonies for each layer to ensure alignment and delivery of the
project.
Participants
Management and top level stakeholders participate in the first step
of the activity. Every person, from planning and development to
end user is considered a member of the community and a potential
participant in latter steps of this activity.
Materials
Whiteboard, an org chart, open minds and commitment to the
mission.
Steps
1
Bring together the inner core of the community onion, the strategic
decision makers of the project, i.e. CEO, CTO or CIO. Gain consensus
on the vision and mission of the project by focusing on the WHY.
2
Take the project leaders on the journey by bringing together the
next layers of the onion, the tactical decision makers, i.e. Product
Owner, Business Analyst and Squad Lead. Share the vision and
mission of the project and empower the leaders and influencers to
decide and commit to the scope and the resources required for a
successful project.
3
Now it’s time to bring the wider project team on the journey by
involving the operational decision makers, i.e. Engineers,

129



Designers, and Account managers. Share the project mission,
vision, resources and scope and invite them to contribute to the
form and function of the project by prioritising what needs to
happen to achieve the project goals within the agreed timeframe.
4
Step 4 happens concurrently with steps 1, 2 and 3 and is critical to
ensure internal adoption of the project. It involves two-way
communication with the end-users of the product, sharing the
vision, mission, scope and function of the project as well as
understanding the cultural context, motivations and processes that
currently exist.
Justification
This activity is a combination of three different concepts applied
specifically to a software migration project. The Community Onion
is a conceptual framework to think about the different kinds of
membership a community can have. It is based on the idea that
those at the centre have the highest level of commitment and
contribution to the community.

Modern military theory divides war into strategic,
operational, and tactical levels and we use these same definitions to
define decisions made at different levels in an organisation’s
hierarchy. In this book we use a lot of military tactics as they can
easily be applied to an organisation in the pursuit of strategic goals.
Strategic decisions are long-term in their impact and they shape
the direction of the whole business. For example, the priority and
130



timing of when a particular migration project should happen. They
are generally made by senior executives. Tactical decisions help to
implement the strategy and are usually made by project leaders or
middle management. Operational decisions that relate to the
day-to-day running of the project and are mainly made by team
leaders or members.

131



5.5. Managing Expectations
Summary
Managing the expectations of the project length is extremely
important to ensure project success. When the expectations are
managed and highlighted early in a project, the team is able to
work creatively without the additional pressure of overhanging
deadlines and late deliveries. The trade-off sliders are a way to
tease out of the team what is important to them and the cone of
uncertainty helps ground the discussion. This activity can be used
both for internal projects so management can be well informed, or
used for external projects so that service providers and customers
are in alignment.
Level of difficulty
Easy
Before you Start
Spend some time searching online and becoming familiar with
trade-off sliders, the cone of uncertainty, and agile vs waterfall.
There are plenty of articles that will give you some background.
Stage
Understand
Suggested time
30 - 60 mins.
Participants
Product Owner, Squad Lead, Account Manager, and any other

132



Stakeholders interested in or influencing the length of time for the
project.
Materials
Whiteboard and markers.
Steps
1
On the whiteboard, draw up the cone of uncertainty. The cone
shows that the further into the future that we try to predict, the
less accurate we will become with our prediction. The justification
in this section has more of an explanation on this. Spend a total of
10 mins asking each stakeholder why the cone of uncertainty is a
practical reality. If you are struggling to get the stakeholders to
agree, use a version of the Johari Window2 and emphasise how the
unknown unknowns compound over time to create a cone.

Figure 5.5: Cone of uncertainty
2Read about the Johari Window at https://en.wikipedia.org/wiki/Johari_window

133

https://en.wikipedia.org/wiki/Johari_window


2
On the whiteboard, draw up the trade-off sliders table and explain
how only one choice per row and per column is allowed. Let the
stakeholders in the room choose their locations in the table. Noting
that they are not allowed to have chosen the same column twice,
but they will try.

Figure 5.6: Trade-off sliders
3
If the stakeholder chooses time as more important over scope, draw
a line on the time axis of the cone of uncertainty and explain how
the amount of scope in this timeframe will be variable. This is fixed
time, variable scope, and you can use an agile methodology for the
project. This is the ideal scenario as it constrains the amount of
time and therefore we know the costs but we do not know the
scope. For internal projects, having fixed time can be useful for
when deadlines are imposed on software teams. For external
134



projects there must be a high-level of trust between the service
provider and the organisation as the contract will be based on time
and materials (T&M).
4
If the stakeholder chooses scope as more important over time, draw
a line on the cone above the time axis and explain how the amount
of time for this scope will be variable. For example, plus or minus
60%. This is variable time, fixed scope, and you can use an agile
methodology. For internal projects, if the project finishes early and
comes in under the cone i.e., less than plus 60%, then your
manager will be pleasantly surprised. For external projects, ideally
the contract will be based on T&M so that if the project is finished
early, the customer will pay less. However, if the customer or the
manager insists on a fixed price and not T&M, then proceed to the
next step.
5
If the stakeholder is adamant that both scope and time are as
important as each other, then the project is fixed time, fixed scope,
and you should use a waterfall methodology. This is not an agile
project. If they want to use agile start again at step 2. However,
they may be happy to do a waterfall project. It is possible to give a
maximum time using a formula based on the cone of uncertainty.
For external projects, this will be a fixed price contract and you will
need to use some old school tactics as scope creep becomes a
significant risk. We have seen some service providers still do fixed

135



priced contracts as agile, but they are very careful to use change
requests for everything that is remotely outside of the original
scope. The management of this is quiet time consuming and can be
self defeating for all parties involved.
Justification
Zeno’s paradox is a philosophical problem that is puzzling at its
core. If you had to walk from point A to point B, we could halve the
distance and you could move to the halfway point. Then from this
new location, we could halve the distance again to point B and
move this distance. We could halve this again and again and
infinitely reduce the distance by a half. This implies it would take
us infinite time to get from point A to point B because we can
always halve the distance, yet we are still walking around without
any problem! This is a paradox.

Estimating is a paradox too. We want to predict the future
and be accurate, but we cannot be accurate because it is an
estimate. This makes estimating puzzling at its core too.

In Physics, there is a phenomenon called the Heisenberg’s
uncertainty principle. The uncertainty principle states that the
more precisely the position of some particle is determined, the less
precisely its momentum can be known, and vice versa. In other
words, you cannot know both its position and momentum; there is
a trade-off.

136



Estimating has a trade-off too. Instead of position and
momentum like the uncertainty principle, the trade-off is between
scope and time. You cannot know both.

A scope is a plan describing the application you wish to build.
In a way, a scope is a model of the application to be built. And like
all models, they are inherently inaccurate. A first reaction is to
spend more time scoping and make it more accurate, but a line is
crossed during this process where you are no longer scoping and
start developing. To truly know the scope you have to deliver the
project to discover all of the inaccuracies, which defeats the purpose
of a scope. In reality, a scope can only go so far within a reasonable
time and will remain inaccurate.

Estimating the time for a project can be even harder. Firstly,
the estimations are based on a scope which is inherently inaccurate.
Furthermore, estimating how long something will take is like
looking into a crystal ball of the future. The further into the future
we try to predict, the harder it is. In fact, the cone of uncertainty
illustrates this. The variance on the time estimate increases
exponentially. The reasons for this can be accounted for in scope
variations like missed stories or new stories being added in, overly
optimistic time estimations, and unknown unknowns. In Appendix
E we have listed out some of the risks associated with a software
project that can contribute to inaccurate time estimates.

137



5.6. Story Estimation
Summary
Estimating the length of a software project is notoriously difficult.
As discussed in Section 5.5 on managing expectations, there are
many risks involved so having a robust estimation process is
essential. There are a number of different ways to go about
estimations and you will find some similarities here with other
methods. One key difference is that we use risk to influence our
estimations. We also use some other factors that attempt to better
match the estimation to reality.
Level of difficulty
Hard
Before you Start
The requirements backlog must be up to date. If you do not have a
requirements backlog, follow the Reverse-Engineering Requirements
activity described in Section 5.2. It is also recommended you have
already run the Managing Expectations activity described in
Section 5.5.
Stage
Prepare
Suggested time
1 to 4 hours depending on the size of the backlog.
Participants
Squad Lead, UX Designer, Web Engineer, Tools Engineer. The

138



estimations must be strictly done only by the squad that will be
developing the project. The Account Manager and Business Analyst
are not allowed to attend this activity as they may inadvertently (or
intentionally) influence the outcome.
Materials
Spreadsheet
Codebots3
Steps
1
Access the story estimation spreadsheet from
https://codebots.com/story-estimation. Open it, save a copy and
have a look around.
2
Fill in the user stories on the X sheet. These are the rows in the
table as shown in Figure 5.7.
3
Put the squad members across the top as the columns in the table
as shown in Figure 5.7. It is recommended a minimum of 3 team
members.
4
The squad lead will choose a story to estimate. Without discussion,
each squad member is to write down their estimation. The choices
for the length of the story is a fibonacci-like sequence shown below:

3It is on the roadmap for Codebots to provide story estimations as part of the
platform. Until it is available, using a spreadsheet will suffice.

139

https://codebots.com/story-estimation


Figure 5.7: Story estimation spreadsheet estimates

• 1 hour (0.13 days)
• 2 hours (0.26 days)
• 4 hours (0.52 days)
• 8 hours (1.05 days)
• 16 hours (2.11 days)
• 32 hours (4.21 days)
• 64 hours (8.42 days, 1.68 weeks)
• 128 hours (16.84 days, 3.37 weeks)
• 256 hours (33.68 days, 6.74 weeks)
• 512 hours (67.37 days, 13.47 weeks)

140



5
The next step is to assign a risk level to the story. The risk is based
on unfamiliarity and complexity.

Figure 5.8: Story estimation risk matrix
6
After each squad member has their time and risk estimates, the
squad lead can facilitate a discussion and the squad can listen to
different justifications and change their estimations if they want.
However, stick to your guns if you need to! Go back to step 4 and
repeat for all the stories.
7
The last step is to analyse the summary found on the last sheet and
shown in Figure 5.9.

141



Figure 5.9: Story estimation spreadsheet summary

Justification
For any person that has dealt with computers, they know to expect
the unexpected. For example, a software engineer can be doing a
task and complete most of the work very quickly in a few hours,
then some very strange behaviour happens and they spend the next
3 days trying to debug and figure out what the heck is going on.
This is not a reflection on the person’s ability; after you have spent
many years in the trenches you come to the realisation that this is
very complex work that carries a lot of risks. This is a major source
of frustration and is one of the reasons why doing estimations can
be an agonising process as it is the unknown unknowns that will
inevitably spring up when the development is underway.
142



We use time and not a points-based mechanism to estimate
an iteration. When we estimate time we do so on the assumption
that the squad members responsible for completing the work have
reached a standard level of proficiency. For example, a web
developer is qualified on using the JavaScript MVC framework and
they are able to create a custom tile, view, or component within a
timeframe because that is what they are qualified to do. If a
developer is faster at completing a task than what was estimated,
then this time is saved on the overall project. For this reason,
stories are estimated on typical qualified squad members.

143



5.7. Entity and Requirements Traceability
Matrix
Summary
The entity and requirements traceability matrix is used to help
systematically record a divide-and-conquer migration pattern
(described in Section 2.4). It is possible to create a traceability
matrix using a spreadsheet and use the Codebots platform to assist
with the process.
Level of difficulty
Hard
Before you Start
The requirements backlog must be up to date. If you do not have a
requirements backlog, follow the Reverse-Engineering Requirements
activity described in Section 5.2. You will also need to have access
to the legacy database schema(s) and get a list of all the tables.
Stage
Plan
Suggested time
Unknown, hopefully less an iteration (usually 2 weeks).
Participants
Business Analyst. Anyone else with knowledge on the legacy
system.

144



Materials
Spreadsheet
Codebots4
Steps
1
Access the entity and requirements traceability matrix spreadsheet
from https://codebots.com/entity-requirements. Open it up, save a
copy and have a look around.
2
Populate the entities on the entity sheet as shown in Figure 5.10.
The entities are the tables found in the legacy database schema. It
is recommended to include all of them to ensure that nothing is
missed from the legacy database.

Figure 5.10: Fill out the entities

4It is on the roadmap for Codebots to provide the entity and requirements
traceability Matrix as part of the platform. Until it is available, using a spreadsheet
will suffice.

145

https://codebots.com/entity-requirements


3
Populate the stories on the requirements sheet as shown in
Figure 5.11. The stories are the requirements and can be reverse
engineered from the legacy system as described in Section 5.2.

Figure 5.11: Fill out the stories
4
Check the relationship between the entities and the stories on the
traceability sheet.

Figure 5.12: Use the matrix to relate the entities and stories

146



5
Inspect the stats sheet to gain insight on the project.

Figure 5.13: Entity and requirements traceability matrix summary

Justification
The difficulty with complex legacy migration projects is not so
much the size of them, it is the systematic approach to how they
are migrated over time. There will be a significant amount of effort
in establishing what it is the legacy system actually does, and what
parts of the organisation it is used in. The journey of continuous
modernisation is to find a software/people fit so that the
organisation can be agile and meet change. The traceability matrix
presented in this migration kit activity goes a long way to helping
the journey.

147



Before this activity is started, the requirements are reverse
engineered from the legacy system. This activity by itself gives a
target list of stories. But for large and complex systems where a big
bang, or firecracker, is not feasible, the project must be broken
down into a number of iterations. Our way of working is to group
several iterations into a milestone and use scoping iterations as
shown in Figure 5.14. Each iteration will have one or more stories
based on the goals and value that will be delivered. Using the entity
and requirements traceability matrix it is now possible to work out
which entities must be included as part of this iteration. This
shines a significant amount of light onto the project and allows a
systematic migration process.

Figure 5.14: Milestones, iterations, and scoping

However, there are a few traps to look out for that can arise
from this process. What happens when an entity belongs to two
requirements that are in different iterations? There are a few ways
to work around this. First, does it make sense for the requirements
148



to be shifted into the same iteration? If it does, then shift the
requirements so they are in the same iteration. If it does not, you
can leave the requirements in seperate iterations but the isolation
checker will fail in the divide-and-conquer migration pattern.
Recall that the isolation checker is a safe guard that ensures the
data integrity of the new application (refer back to Figure 2.4). To
make sure the isolation checker is going to function as expected,
any releases that include an entity must include all of the
requirements that relate to that entity. A nice way to ensure this is
to use milestones to group iterations that cover all the requirements
for the entities being migrated to the new application.

Furthermore, the entity and requirements traceability matrix
can be used to help decide on the boundaries for the new
microservice applications. We have included another approach
called the bubble context and anti-corruption layer found in
Section 5.11. A different approach is to base the new application
suite on the natural boundaries that arise from the matrix. For
some legacy systems, the matrix can help reveal a new set of
microservices relatively quickly, but for some more complex legacy
systems the new set of microservices is not as obvious. It is our
intention to present some techniques in a future version of this
book.

149



5.8. Database Migration
Summary
A database migration is a typical starting point for a new
application on the Codebots platform. The steps described next will
migrate your legacy database to a new application architected using
microservices.
Level of difficulty
Moderate
Before you Start
You will need a copy of the database. If the database type you are
migrating from is not yet supported, try exporting your database to
a database schema in standard SQL.
Stage
Migrate
Suggested time
60mins depending on how complex security and administration you
will be implementing.
Participants
Product Owner, Business Analyst. Possibly a technical team for
database types not yet supported
Materials
Codebots

150



Steps
1
Create a new App on the platform and choose new legacy migration.

Figure 5.15: Choose new legacy migration
2
Inspect the entity diagram as described in Section 4.2 and repair the
database if needed.
3
Setup the security groups using the security diagram described in
Section 4.4 and lock down the Application Programming
Interface (API).

151



4
Setup the CRUD administration pages in the application using the
UI diagram as described in Section 4.3.
5
The last step is to migrate any extra business logic and the process to
follow is described in the justification. The business logic of the
legacy database can usually be found in multiple locations
including:
• Forms (such as Microsoft Access forms).
• Stored Procedures.
• Views.
• Custom Code.

Justification
There are some code analysis tools that could prove helpful to find
the important sections of the code, but in our experience using
automated tools to migrate between languages is not efficient due
to the garbage in, garbage out inescapable truth. So, roll up your
sleeves and try to understand the code. Follow the process of
reverse engineering the requirements as describe in Section 5.2 and
look at using behaviours to cover the business logic (see Appendix C
for a list of behaviours). If the business logic is not covered by a
behaviour, then you will need to create custom code as shown in
Figure 4.2.

152



5.9. Spreadsheet Migration
Summary
Spreadsheet migration is a common type of migration as there are
many limitations that prevent spreadsheet from being scalable. In
most cases spreadsheet consists of a way for adding, modifying or
removing of data with certain fields being dynamic and calculated
through the use of formulas.
Level of difficulty
Hard
Before you Start
You will need to be confident on how to design a database schema.
You will be required to identify the entities, attributes, and
relationships of the data found in the spreadsheet and create an
entity diagram to match.
Stage
Migrate
Suggested time
Around 60 mins for basic spreadsheet and two days for complex
spreadsheets. It could be longer depending on how messy the
spreadsheet is.
Participants
Business Analyst, Product Owner. Possibly a technical team if the
spreadsheet contains formulas.

153



Materials
Codebots
Steps
1
Start a new empty project on the platform.
2
Open the entity diagram as described in Section 4.2. It will be blank.
3
Identify the first entity for your spreadsheet. On one of the sheets,
you will have some tabulated data where the rows of the data and
the things on that sheet. Whatever that thing is, is your entity.
Name it.
4
For each column within your spreadsheet we will need to create a
new attribute for the entity. Be mindful that you should try to
retain the cell formatting by matching with a corresponding
attribute types or validation pattern.
5
Repeat 3 and 4 for as many entities you can identify in your
spreadsheet. Then add the relationships between the entities. This
is a normal part of database schema design. Your options are
one-to-one, one-to-many, and many-to-many.
6
Once you have the entity diagram completed, setup the CRUD
administration pages in the application using the UI diagram as
154



described in Section 4.3.
7
Command your codebot to write the code and deploy the
application. You should now be able to access the application in a
beta environment.
8
On the CRUD page, you will be able to import the data. Click the
import button as seen in Figure 5.16. On the import screen you will
be given an option to download a blank spreadsheet that have the
columns and some explanations inside it. You will need to manually
copy and paste from the original spreadsheet into this spreadsheet
to upload the data.

Figure 5.16: Import and Export UI
155



9
For the complex formulas and functions found in the spreadsheet,
we recommend following the Reverse Engineering Requirements
migration kit activity found in Section 5.2. Once you have worked
out what the true intention of the complex behaviour is, then you
can move forward and create a great UX.
Justification
Spreadsheets are a common tool that many organisations use for all
sorts of various processes. They are great because you can get a
quick win and solve relatively complex problems without needing
knowledge of how to program. To get more complex spreadsheets
however, you will need to be able to use formulas and functions,
which is a type of programming. There are a number of problems
that organisations run into when you spreadsheets have out lived
their usefulness.

One of the weaknesses of spreadsheets was getting
concurrent users working on them. In the old days, the
spreadsheets would be emailed around and it would be easy to lose
track of which was the latest or merge in changes across different
users. More recently, there are now online spreadsheets such as
Google Sheets (https://www.google.com/sheets/about/) that help
with this and provide multi-user access. Still the biggest problem
that remains is the UI. Asking the people of your organisation to log
in and update a spreadsheet for a particular business function end
up being a poor UX. Furthermore, spreadsheets become
156

https://www.google.com/sheets/about/


unmaintainable quickly once formulas and functions are added in
due to the openness and changes that can be made. It is pretty
much a free-for-all. There are some more advanced online tools
that allow you to build a UI on top of a spreadsheet like AppSheet
(https://www.appsheet.com/). Make sure you look at the total cost of
ownership for no-code platforms like this and carefully consider
who owns the source code of your application.

157

https://www.appsheet.com/


5.10. PDF Migration
Summary
Migrating a PDF form to a web-based form is a common task. Most
of the configuration of the new form is done in the application and
not in the model. The reason for this is to ensure that the
administrator of the application has the control to make changes to
the forms without the need for further deployments. So, the first
few steps of the migration are enabling the forms in the diagram
editor and deploying the application. Once this is completed, the
majority of the work is then done in the application except when
custom tiles are required. See Figure 5.17 for the PDF migration
workflow to help visual the process.

In the justification section, there are more details on how to
use the functionality of the forms such as slides, skip logic, show
logic, and what tiles are available. There is however an important
concept that should be understood. When you are migrating a PDF
form and you come across a section where none of the standard
tiles match your desired functionality, you will need a custom tile.
Level of difficulty
Moderate
Before you Start
All forms in a business follow a different process to make sure that
they are handled correctly. In order to make sure that the migration
of these forms is successful, it is important to understand every step
158



Figure 5.17: PDF Migration Workflow

a form goes through, from how it is processed, to who is involved,
to the different resources that a user may require access to in order
to fill it out. If you don’t know all of the details yourself, make sure
you have access to someone you can consult with for each form.
Suggested time
60mins per PDF form (depending on the size and complexity of the
PDF).
Stage
Migrate
Participants
Business Analyst, Product Owner. Possibly a technical team for
custom tiles.

159



Materials
Whiteboard, or potentially printing and post-it notes with lots of
wall space.
Steps
Planning your Form
There are a number of ways in which you can plan your form. If
you want to keep it exactly the same, you could print out the form
(or use a PDF editor) and draw squares around every ”input” you
want to be included. This is essentially any place where you need
the user to write in some details or select an option. Later, these
will be recreated using question tiles.
If you want to reorganise or reconfigure the form, there are a large
variety of options available to you; you could use post-it notes, a
whiteboard, or even cut out the questions in the form and use
blu-tack. It is important that you work your way through the form,
making note of the key sections in the form and write them down
with the questions inside. At this point, you can rearrange the
sections and questions into whatever order you desire. The sections
allow you to keep the related questions all together so the form
follows a logical order.
Even if you aren’t reordering your questions or altering the form, it
is important that you familiarise yourself with the form itself so
you can be confident that what you are building is correct.

160



1
Enable forms in your entity diagram, and include form display tiles
in the interface builder anywhere you want one of these forms to go
(the interface step can be done later, though it will require a
re-deploy).
2
Deploy your application and open up the backend. If you added
forms successfully, it should now be available as an option in the
menu. Navigate to it and create a new form.
3
Enter the details of the form, and configure the display settings in a
way that suits your application and the requirements of your form.
Everything will autosave as you go. In this page, you can also select
the location this form is displayed in, according to the locations you
specified in step one (if you did use the UI builder).
4
Go to the build tab of the form builder. In this screen you can add
and edit question tiles, control their options, reorder them, and
manage your slides (see more information on slides in the
justification section). Following your plan, start adding in
questions (and configuring their validation if necessary).
5
Once complete, you can move to the logic tab if necessary, or you
can preview the form you have built.

161



6
If you are happy with everything, you can publish your form and it
will become available on the frontend of your application (provided
you completed the interface part of step one).
7
Repeat those steps as necessary until you have completed all of your
forms.

Figure 5.18: Backend Form Builder
Justification
PDF forms can be used in any number of ways within a business.
From being used internally to capture reports, on the company’s
website for people to fill out and email back, or printed for
customers to fill out and post back to you as snail mail, they have
162



become deeply embedded in the processes of a lot of companies. No
matter how they are included in a business process, the use of them
requires a whole workflow to fill them out, submit and then process
them in the correct way. In a world where customers are used to
being able to fill out forms online and have them submit instantly,
the process of filling out PDFs becomes an inconvenience they want
to avoid. For this reason, it is important that we ease this process
as much as possible. By migrating the workflow over to be a
web-based system, the users are able to complete the process with
more efficiency and the risk of invalid values becomes significantly
smaller.
Submissions
Forms can be filled out multiple times by multiple users. Each time
a user submits their form, a new submission is saved in the
database. All submissions received for a form can be viewed in your
application’s backend.
Versions
Versions are in place to allow you to edit and create forms, without
users seeing it mid-build. It allows you to control when your latest
changes are made available to the public so you can edit a form, save
and walk away, without the partially edited version being shown to
users until you are ready. This is quite handy if you regularly need
to update a form with new questions or standards, or if you want to
reconstruct an existing form. Versions are automatically made
when you edit a form which has been published, though you control

163



when your new version is published. You can see previous versions
of a form from the backend of your application.
Slides
Slides are a way of introducing logical grouping to your questions,
and are used to give you control over how your questions are
displayed. They can be thought about in a similar way to
Powerpoint Slides, in that you use them to display a few pieces of
information before moving onto the next one. Using the display
options, you can also configure whether they display as seperate
”pages”, or if they all show on the same page but with a distinct
break between the sections. They can also be helpful when building
the logic behind a form as they allow you to skip large sections at
once.
Tiles
Tiles are how you add questions into the form. There are a large
variety of types available, some of which allow you to switch
between the types (i.e. dropdown, checkboxes and radio buttons).
You can add, remove and duplicate tiles, in addition to being able
reorder them.
Logic
There are two types of logic which are available inside a form: skip
or show. The logic is based around how a user answers a given
question, and runs the logic when they answer. Skip logic allows you
to show a question normally, but hide it occasionally. Show logic
means that a question is normally hidden, and is shown only if a
164



question is answered a certain way. You can choose whether the
logic is applied to an individual tile or a whole slide.

Due to the nature of both kinds of logic, they can be used to
recreate the other type (though it can make things complex). It is
up to you around how you choose to approach this, though we do
recommend thinking about this first before you start making the
logic. This should be considered while you are still in the planning
stage so you can draw arrows between things and play out some
scenarios to make sure you understand everything.

Once your logic is built, you can test it using the preview
section of the form builder. The more complicated your logic is, the
more important it is that you test it thoroughly. It is possible to
make it impossible to finish a form if the logic is incorrect. For that
reason, the preview tab does have a reset button in case you get
stuck, which takes you back to the start of the form.

165



5.11. Bubble Context and Anticorruption Layer
Summary
DDD [8, 9] divides a complex domain up into multiple bounded
contexts and maps out the relationships between them. From these
these bounded contexts, a single one is selected to become the
bubble and its relationships between the other bounded contexts
are analysed in detail. These relationships become the basis for the
anticorruption layer where any conceptual objects from the legacy
model are translated before being utilised by the selected bounded
context.
Level of difficulty
Moderate
Before you Start
An application domain contains many subdomains that represent
its inner workings. This is especially true for many legacy systems
where the software has simply grown over time to address
changing requirements. Sometimes a legacy system may be made
up of a series of smaller applications with potentially complex
relationships between them. Each of these applications could be
considered subdomains of the whole and, in their own right,
domains with their own subdomains.

The existence of these domains and subdomains allows for a
measured approach to migration that addresses each component or
subdomain in turn without corrupting the new system with
166



existing concepts and ideas. Before starting this activity, a good
understanding of the existing systems domain is important.
Suggested time
60 minutes per bubble context (assuming the complexity of its
iterations to the system as a whole does not go beyond three
distinct connections).
Participants
Business Analyst and a technical team.
Materials
Whiteboard or butchers paper.
Steps
1
Break your complex domain down into a series of bounded contexts
with the relationships between them mapped out. For this we make
use of something called concept mapping 5.
2
From theses select your context in which you will create your
bubble from. It is ideal that this is not too complex but provides
enough intricacy that there is value in migrating it.
3
Now that we have our selected bounded context, we can begin to
create our new model. Ensure that this model is built based on the
requirements of the system and not on the legacy system. This is

5For more information see Eric Evans keynote at Explore DDD 2017 https://www.

youtube.com/watch?v=kIKwPNKXaLU

167

https://www.youtube.com/watch?v=kIKwPNKXaLU
https://www.youtube.com/watch?v=kIKwPNKXaLU


your opportunity to improve and remove redundancy.
4
Have a look at the relationships between your selected bounded
context and the others in your domain. List these in detail taking
special note of the conceptual objects involved (i.e entities, services,
data structures, protocols etc).
5
Given this list, explore how they would be represented within the
bubble context and update your model accordingly. Write this down.
6
With with these details we can now start building out what is
required by our anticorruption layer. This will include any services,
translators and adapters. Ask the questions,

1. What data do we need?
2. How does this data differ between the two contexts.

Once we have built out our anticorruption layer and our bubble
context we are ready to put this into action.
Justification
A highly important part of migrating a legacy application is
ensuring that the new application does not end up inheriting the
technical debt apparent within the existing legacy model. It is
almost equally important for a successfully migration that any risks
associated with the project are minimised and the overall exposure
is reduced to maximise success. To achieve this, we use two domain
168



driven design concepts. The bubble context and the anticorruption
layer.

To have a bubble context is to have established a small
bounded context through the use of a an anticorruption layer. This
small bounded context reduces the risk and complexity when
migrating large legacy systems through the breaking down the
problem into manageable pieces. The anticorruption layer protects
this smaller piece of the larger system from corruption from the old
legacy system and allows it to be developed independently.

Through independence, many of the old concepts or models
that may exist in the legacy system can be adopted or removed
completely as required for the new system, without any existing
dependency being broken.

While being developed independently and in isolation, the
new migrated system that exists within our bubble can still interact
with the legacy system and as such can still be integrated as a
useful part of the whole while still maintaining its own model.

This is achieved through the use of the anticorruption layer.
The anticorruption layer provides a series of services, facades,
adapters and translators to transform the data from the legacy
context into the new migrated context contained within our bubble
and often vice versa maintaining the connection and the integrity of
both systems (see Figure 5.19). This separation of the two contexts
prevents either context from morphing to mirror the other and thus
allowing the new model to remain strong.

169



Figure 5.19: Anticorruption layer

An anticorruption layer can be utilised to bridge multiple
bounded contexts with the same benefits found when using the
single context contained within our bubble 6. This assists in the
migration and integration of mutiple parts of the system.

While the purpose of the bubble context is to maintain
separation from the legacy system, bubbles can pop. When this
occurs the context maintained within the bubble can be integrated
back into the existing system seamlessly through the use of our
anticorruption layer.

6For more detail on the how the bubble context and anticorruption can be useful
tools in legacy migration watch Eric Evans talk on Domain Driven Design Strategies
for Dealing With Legacy Systems https://www.youtube.com/watch?v=OTF2Y6TLTG0

170

https://www.youtube.com/watch?v=OTF2Y6TLTG0


Once an application has started to be broken down into it’s
component contexts, the concept of microservices start to make
more sense as the reduction in risk can be maintained through the
usage of a microservice architecture (Section 3.3).

As each bounded context of the system is transformed into a
bubble context, they can be integrated back into the system as a
microservice.

171



172



6. Conclusion

“True knowledge exists in knowing that you know nothing.” Socrates

173



Codebots is both a methodology and a set of technologies. It is a
methodology because it lays out an approach to how a codebot
evolves over time. As long as time moves forward and the team
follows the methodology, a codebot will improve. It is a set of
technologies because people can interact with a codebot to write a
full-stack software applications. A codebot is designed to be
complimentary to other software frameworks, methodologies and
applications, not a replacement. Similarly, a codebot is not a
replacement for software engineers. A codebot does the heavy
lifting of the project and can solve common business patterns. It is
up to the humans to use their creativity to solve the truly complex
problems that a machine cannot. A codebot helps people build
software faster, of better quality, and with greater reuse.

The hypothesis presented in this book is that business agility
can be positively impacted through a process of continuous
modernisation. Continuous modernisation is a strategy for legacy
systems to ensure the software fits the people using it. The problems
faced include technical challenges around the software and cultural
challenges around the people. When a software/people fit is found,
momentum is gained by the organisation and business agility is
increased.

All software systems are legacy systems the moment they are
deployed and people start using them. As time progresses, the
legacy system suffers from software entropy as technical debt,
knowledge loss, and changing markets all contribute to the
174



negative impact on the organisation. Since time cannot be stopped,
legacy systems are an inevitable consequence that organisations
must address.

Agile software teams are acutely aware of technical debt and
dedicate time to cleaning up and staying on top of the problem.
However, the older the software, the more problems it suffers from.
Some really old systems no longer have any relevant
documentation, the original developers have left, and the market
has changed so significantly that the software is no longer fit for
purpose. Furthermore, the software can entangle itself with other
software systems and the people can become accustomed to its use.
So, the updating or removal of the legacy system becomes a
significant problem, both technically and culturally.

This is a complex problem with many contributing factors.
There is no magic wand to make it disappear. However, it is
possible to put strategies and tactics into play that help minimise
the risks. A strategy is the overarching plan. Tactics are specific
actions undertaken as part of the strategy.

The strategy for continuous modernisation is a three-phase
approach. Phase 1 is designed to enable organisations to start on
their journey of continuous modernisation. During phase 1 the first
legacy system will be migrated. Typically, this will be a smaller
system with small impact. Start with the low-hanging fruit. Phase
2 is to connect this newly migrated legacy system with other
systems, such as downstream reporting tools (this will really

175



unlock the data). It can also include developing the new system
further to find a better software/people fit. Phase 3 is to continue
onto other legacy systems within the ecosystem. During the earlier
migrations, you should concentrate on the satellite systems to
isolate the larger monoliths before taking them on.

While executing on this strategy we recommend five tactics, a
migration kit, and hopefully by now you can see the benefits of
using a codebot. The migration kit is a set of activities that can be
used during a legacy migration project. They are the arrows in your
quiver and each activity is self-contained and may or may not be
used on a project. The five tactics should be used on every project.
These five tactics are aimed at enabling the organisation to gain
momentum and increase business agility. The five tactics are:

1. Use science to drive innovation at a pace in step with the
organisational rhythm (Section 3.1).

2. Enable the community around your organisation. A strong
community builds a defendable moat around your organisation
(Section 3.2).

3. Build small loosely coupled microservice applications
emphasising a separation of concerns (Section 3.3).

4. Increase the visibility and control of the entire software
ecosystem by lifting the fog of war (Section 3.4).

5. Use models to capture knowledge and enable control
through the use of codebots to do the heavy lifting on software
projects (Section 3.5).
176



The overall result of these tactics is to create a software
ecosystem where the legacy systems are smaller, visible, and
loosely coupled, so that they are more able to be modernised in the
future. There is a perfect opportunity to set a mode of continuous
modernisation rolling forward alongside the agile business. As
organisations embrace the mantras that underpin agile and work
out their own hybrid approach that works for them, it is possible to
embrace continuous modernisation. Even organisations that are not
agile yet, or starting the journey, this can be a good starting point.
By making time your ally, you are able to set forward a process of
continuous modernisation that enables the people to carry forward
with empowered teams. This becomes the role of the servant leader
and can ultimately increase your organisation’s health and give you
a competitive advantage.

Knowledge is power and a main contributor to legacy systems
is the lack of understanding about what business agilitythe system
is. It is possible to create a model of the legacy system and have a
codebot use the model to write significant amounts of a new target
application. The model is part of the knowledge representation of
the application. But there is a bigger benefit that comes the next
time it’s time to modernise that legacy system, you have already
captured the knowledge from the last migration effort so you are in
a much better position. Another way to think about it is starting at
the end point and working backwards. What would be the best
position to be in at the start of a legacy migration project? The

177



answer is a clear understanding about the legacy system, why it
was built, what other systems it integrates with, etc. So, to make
sure we have the knowledge, let’s capture it in a model that is as
important as the source-code itself. This knowledge is power
because you are already on the front foot to modernise the system
without complex and difficult work around reverse engineering the
legacy system. To get ourselves into this ideal position of
knowledge, we must capture that information in today’s legacy
migrations projects. This is the best chance we have at breaking the
cycle of legacy and our insanity.

There is cautious optimism around using a microservices
architecture. The results so far have been positive. However, there
will be unintended consequences and only allowing more time to
play out will reveal them to us. We can however look at some other
areas of software that have embraced similar principles as
microservices, such as the principle of separating concerns through
the use of API. For example, in object-oriented programming there
is the concept of inheritance. A sub class can inherit from a base
class and this can happen many times creating long dependency
chains. This has resulted in a phenomenon called the fragile base
class problem. Basically, the long inheritance chains make changes
to the base class difficult because of the dependencies. It is possible
to work around it with backward compatibility and well-defined
interfaces, but is there a fragile microservice problem on the horizon
we do not know about yet?
178



The next series of experiments that we are conducting and
will publish in the next version of this book will shed light onto a
few areas. The first is around what business agility actually mean?
Most people acknowledge, and agree, that being ready to meet
changes in market conditions is a good idea. But how do we
measure the agility of a business? There is some good research that
has been done in manufacturing around this and we will be
gathering up more evidence and integrating it with our hypothesis.
This leads into another experiment we are conducing around the
fog of war. Again, we all know it exists, but how do we effectively
manage it? As all good scientists do, we can admit when we don’t
have a theory that matches observation, however we are going to
investigate this phenomenon and further our evidence to support
the hypothesis.

In this book, we are not claiming to provide all the answers.
Like all good scientists do, we acknowledge the things we do not
know and formulate hypothesises and experiments to add to the
body of knowledge on the subject. It is our intention to update this
book frequently and send you a new copy each time we do. The
migration kit will continue to expand and please feel free to send us
any learnings that you find on your path of continuous
modernisation.

179



180



Glossary
access database is another name for Microsoft Access (or MS

Access), an information management tool that enables
managing related information efficiently and analysis on large
amounts of information. 38

actuator is a component of a machine that is responsible for
moving and controlling a mechanism or system. 85, 86, 89, 113

Agile sprint is one time-boxed iteration of a development cycle. 99
attributes belong to an entity and describe characteristics such as

name, height, DOB for an employee entity for example. 93, 153

backward compatibility refers to a hardware or software system
that can successfully use interfaces and data from earlier
versions of the system or with other systems. 178

black-box is a device, system or object which can be viewed in
terms of its inputs and outputs, without any knowledge of its
internal workings. 73, 74, 86, 87, 97

blockchain is a growing list of records, called blocks, that are
linked using cryptography. 64

bounded context [8] is the a description of a boundary (typically a
subsystem, or the work of a particular team) within which a

181



particular model is defined and applicable. 166, 167, 168, 169,
170, 171

brownfield project is used in many industries, including software
development, to mean to start a project based on prior work or
to rebuild (engineer) a product from an existing one. 42

burn-down charts is a graphical representation of work left to do
versus time. 124

business agility allows organisations to respond rapidly to internal
and external changes. 18, 19, 20, 21, 22, 23, 25, 28, 33, 58, 61,
64, 72, 82, 174, 176, 177, 179

client-side is a term referring to the part of a web application
running on the user’s computer (also known as front-end). 70

cone of uncertainty a concept which shows how uncertainty about
a thing increases over time exponentially from the point of last
evaluation. 132, 133, 134, 135, 137

context is the setting in which something appears that determines
its meaning. A model can only be understood in a context. 21,
22, 24, 27, 70, 122, 130, 149, 167, 168, 169, 170, 171

development target is the the source code in the target application
that will be deployed to the end users. 97, 101, 102, 103, 105,
106, 108, 110, 112

182



domain is a sphere of knowledge, influence, or activity. The subject
area to which the user applies a program is the domain of the
software.. 12, 13, 77, 78, 79, 91, 117, 118, 121, 166, 167, 168

entities are one thing that is modelled from the real world and
corresponds to a table in the database. 26, 93, 94, 96, 145, 146,
148, 149, 153, 154, 168

entity diagram the diagram which is used to model entities. 91, 93,
151, 153, 154, 161

epics is a high-level theme or feature that is used to categorise
related stories. 118, 120

fail-over a pre-configured backup which can be switched to,
typically automatically, in the event of a failure. 70

field trials are an experiment to demonstrate just how much value
Codebots adds to software projects. 90, 112

full-stack applications these are applications which utilise or are
comprised of a client-side and a server-side. 100

hybrid mobile-apps mobile applications which are built on a
framework which enables them to be compiled and deployed to
the most common platforms. 70

inheritance a term in software which implies that one thing
inherits the properties and behaviours of another thing. 178

183



iteration a set period of time during which the project team aims
to deliver value to the customer. 23, 59, 62, 63, 65, 99, 101,
103, 104, 119, 120, 143, 144, 148, 149, 167

Johari Window a technique developed by psychologists Joseph Luft
and Harrington Ingham that helps someone better understand
their relationship with themselves and others. 133

lean enterprise is a practice focused on value creation for the end
customer with minimal waste and processes. 21, 22

lean enterprise is a scientific approach to creating and managing
startups and get a desired product to customers’ hands faster.
21, 22, 23

legacy system any software system that is being used in an
organisation. 6, 9, 12, 18, 19, 20, 23, 24, 25, 32, 36, 38, 39, 40,
41, 42, 43, 46, 47, 49, 50, 51, 56, 61, 67, 70, 71, 72, 73, 74, 78,
81, 90, 118, 119, 122, 144, 146, 147, 148, 149, 166, 167, 169, 170,
174, 175, 176, 177, 178

meta-model a model which is used to define another model. 76,
77, 78, 79

microservices a software development technique: a variant of the
service-oriented architecture (SOA) architectural style that
structures an application as a collection of loosely coupled
services. 32, 68, 69, 70, 72, 94, 98, 149, 150, 171, 178

184



model an abstract representation of something. 39, 47, 58, 64, 73,
74, 75, 76, 77, 78, 79, 80, 82, 89, 91, 92, 99, 109, 110, 122, 137,
158, 166, 167, 168, 169, 176, 177, 178

modeller a user who uses a diagram to model their application. 93,
95, 96

monolith is a large scale application that tends to have tightly
coupled code and is affected by an inability to change quickly.
37, 69, 70, 81, 176

no-code platform provides it’s user with a means to build
applications with no coding experience. 157

offline capability a capability of the application which enables it to
function (to varying degrees) without an internet connection.
70

OpenAPI a specification (originally known as the Swagger), for
machine-readable files for describing, producing, consuming,
and visualising RESTful web services. 32

pattern a general, reusable solution to a commonly occurring
problem within a given context in software design. 1, 31, 32,
43, 45, 46, 47, 48, 49, 51, 70, 78, 81, 97, 98, 102, 105, 112, 113,
122, 144, 149, 154, 174

185



platform is found at http://codebots.com and where the users
create and manage their projects. 30, 76, 80, 82, 86, 91, 92,
118, 119, 124, 139, 144, 145, 150, 154

protected region is a designated area within any Codebots
applications that is protected from being overwritten by the
bots. 87, 101

relationships are an association between two entities. The
standard relationship types include one-to-one,
one-to-many, and many-to-many. 93, 153, 154, 166, 167, 168

relationships is a type of software testing that aims to confirm
that a recent changes to the application haven’t had
unforeseen affects on existing functionality. 108

requirements define functions to be performed by the system,
performance measures of the system and its functions, and
constraints that are imposed on the system. Requirements are
defined for all fundamental inputs to an application as
necessary. 14, 16, 28, 46, 49, 74, 78, 80, 86, 98, 100, 101, 106,
107, 108, 110, 115, 116, 118, 119, 121, 122, 138, 144, 145, 146, 147,
148, 149, 161, 166, 167

satellite systems are smaller application systems that surround a
larger applications. 176

186

http://codebots.com


schema in the context of a database, it is the organisation of data
as a blueprint of how the database is constructed. 43, 46, 74,
92, 93, 144, 145, 150, 153, 154

scrum master facilitates the agile process, ensure the team lives up
to the values and be a servant leader to it’s project team. 41, 117

security diagram is the diagram which is used to model security.
91, 96, 151

server-side is a term referring to the part of a web application
running on the server or not on the user’s computer (also
known as back-end). 30, 70

shadow IT also known as Stealth IT or Client IT, are information
technology systems built and used within organisations
without explicit organisational approval. 71

show logic is added to a slide to determine if the slide should be
shown or not. 158

skip logic is added to a slide and if evaluated to true, will skip to
the configured slide. 158

slides are the sequence of pages found in a form. Slides can be
grouped into phases and a slide will have one or more tiles to
display information to the user. A slide can have skip logic and
show logic to allow configuration on the order the slides could
be presented. 158, 161

187



software ecosystem refers to the entirety of an organisations
software systems and how they interact with each other. 56,
58, 71, 72, 82, 176, 177

Spring in the context of software: an application framework and
inversion of control container for the Java platform. 30, 70, 98,
113

stored procedures is a set of Structured Query Language (SQL)
statements with an assigned name, which are stored in a
relational database management system as a group, so it can
be reused and shared by multiple programs. 70

technical debt is the resulting work required throughout the
development process, which can come in the form of bug fixes,
code refactor or writing documentation. 71, 105, 168, 174, 175

test execution tool is used to record a test procedure, then running
that procedure and capturing the results. 110

test coverage is defined as a metric in software testing that
measures the amount of testing performed by a set of test. 30,
31

testing target is the the source code used to test the target
application. 30, 106, 108, 110, 112

tests scripts are used for capturing the steps to be run when
performing a test. 110

188



tiles are the basic building blocks of the development target and
are a fundamental way to deliver functionality using
microservices. 94, 95, 158, 159, 160, 161, 164

traceability matrix is table used to trace the state of the
relationship between two isolated collections of things. 74,
106, 107, 108, 144, 145, 147, 148, 149

two-factor is a method where by a second layer of authentication,
on top of a password, is used to authenticate a user. 104

user story is a fine-grained requirement, written from a user’Äôs
perspective. 99, 101, 120

user groups are a method of grouping system users for the purpose
of application access or security control. 96, 117

validators are placed on attributes to ensure that the data entered
conforms to a validation rule. 93

valley of death refers to the difficulty of dealing with the various
complexities of growing a business. Can occur at different
stages of a business. 20

views in the context of client-side development: an isolated piece
of logic which contains the layout, logic and interaction
events, often comprised of other smaller views. 91, 94

189



waterfall is a development process which emphasises linear
sequential flows of development, where one piece of
functionality can not be started until the previous has been
completed. 30, 63, 132, 135

white-box when a machine, system or application whose internal
structure or processing is known in addition to the knowledge
about its inputs, outputs, and the relationship between them.
74, 87, 88

190



Acronyms
AAA Authentication, Authorisation, and Auditing
AI Artificial Intelligence
API Application Programming Interface
AR Augmented Reality
CI Continuous Integration
CRM Customer Relationship Management
CRUD Create/Read/Update/Delete
DDD Domain-Driven Design
DIKW Data, Information, Knowledge, and Wisdom
DSL Domain-Specific Language
KM Knowledge Management
M2M Model-To-Model
M2T Model-To-Text
MBT Model-Based Testing
MDE Model-Driven Engineering
MDSD Model-Driven Software Development

191



ML Machine Learning
MVC Model View Controller
MVP Minimum Viable Product
NLP Natural Language Processing
PMF Product/Market Fit
SPL Software Product Lines
SQL Structured Query Language
SUT System Under Test
UI User Interface
UAT User Acceptance Testing
UX User Experience
VR Virtual Reality

192



Bibliography
[1] M. Balog, A. L. Gaunt, M. Brockschmidt, S. Nowozin, and

D. Tarlow, “Deepcoder: Learning to write programs,” in 5th
International Conference on Learning Representations, 2017.

[2] K. Beck, Implementation patterns. Pearson Education, 2007.
[3] C. P. Bonini, Simulation of Information and Decision System in the

Firm. Prentice-Hall, 1963.
[4] P. Clements and L. Northrop, Software product lines.

Addison-Wesley, 2002.
[5] E. Escott, P. Strooper, P. King, and I. J. Hayes, “Model-Driven

Web Form Validation with UML and OCL,” in Current Trends in
Web Engineering, ser. Lecture Notes in Computer Science,
A. Harth and N. Koch, Eds. Springer Berlin Heidelberg, 2012,
vol. 7059, pp. 223–235.

[6] E. Escott, P. Strooper, J. Steel, and P. King, “Integrating
Model-Based Testing in Model-Driven Web Engineering,” in
Software Engineering Conference (APSEC), 2011 18th Asia Pacific,
2011, pp. 187 –194.

[7] E. Escott, P. Strooper, J. G. Süß, and P. King,
“Architecture-Centric Model-Driven Web Engineering,” in
Software Engineering Conference (APSEC), 2011 18th Asia Pacific,
2011, pp. 106 –113.

193



[8] E. Evans, Domain-driven design: tackling complexity in the heart of
software. Addison-Wesley Professional, 2004.

[9] ——. (2013) Getting started with ddd when surrounded by
legacy systems. [Online]. Available:
http://domainlanguage.com/wp-content/uploads/2016/04/
GettingStartedWithDDDWhenSurroundedByLegacySystemsV1.
pdf

[10] T. Falls. (2016) Keen io’s community commitment curve and
the keen onion. Keen,io. [Online]. Available:
https://speakerdeck.com/timfalls/
keen-ios-community-commitment-curve-and-the-keen\
-onion

[11] M. Fowler, Patterns of Enterprise Application Architecture.
Addison-Wesley, 2003.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-oriented Software.
Addison-Wesley Longman Publishing Co., Inc., 1995.

[13] J. A. Goguen and C. Linde, “Techniques for requirements
elicitation,” in [1993] Proceedings of the IEEE International
Symposium on Requirements Engineering. IEEE, 1993, pp.
152–164.

[14] Y. N. Harari, Sapiens: A brief history of humankind. Random
House, 2014.

194

http://domainlanguage.com/wp-content/uploads/2016/04/GettingStartedWithDDDWhenSurroundedByLegacySystemsV1.pdf
http://domainlanguage.com/wp-content/uploads/2016/04/GettingStartedWithDDDWhenSurroundedByLegacySystemsV1.pdf
http://domainlanguage.com/wp-content/uploads/2016/04/GettingStartedWithDDDWhenSurroundedByLegacySystemsV1.pdf
https://speakerdeck.com/timfalls/keen-ios-community-commitment-curve-and-the-keen\-onion
https://speakerdeck.com/timfalls/keen-ios-community-commitment-curve-and-the-keen\-onion
https://speakerdeck.com/timfalls/keen-ios-community-commitment-curve-and-the-keen\-onion


[15] V. Harnish, Scaling Up: How a Few Companies Make It... and Why
the Rest Don’t. Gazelles Incorporated, 2014.

[16] J. Humble, J. Molesky, and B. O’Reilly, Lean Enterprise: How
High Performance Organizations Innovate at Scale. O’Reilly, 2015.

[17] M. T. Jones, Artificial intelligence: a systems approach. Laxmi
Publications, Ltd., 2008.

[18] W. Kent, Data and Reality: A Timeless Perspective on Perceiving and
Managing Information. Technics publications, 2012.

[19] G. Kotonya and I. Sommerville, Requirements engineering:
processes and techniques. Wiley Publishing, 1998.

[20] M. M. Lehman, “Programs, life cycles, and laws of software
evolution,” Proceedings of the IEEE, vol. 68, no. 9, pp.
1060–1076, 1980.

[21] P. Lencioni, The advantage: Why organizational health trumps
everything else in business. John Wiley & Sons, 2012.

[22] J. Lewis and M. Fowler. (2014) Microservices. [Online].
Available:
https://martinfowler.com/articles/microservices.html

[23] D. MIT Sloan. (2014) Strategy, not technology, drives digital
transformation. [Online]. Available: https://www2.deloitte.
com/insights/us/en/topics/digital-transformation/
digital-transformation-strategy-digitally-mature

195

https://martinfowler.com/articles/microservices.html
https://www2.deloitte.com/insights/us/en/topics/digital-transformation/digital-transformation-strategy-digitally-mature
https://www2.deloitte.com/insights/us/en/topics/digital-transformation/digital-transformation-strategy-digitally-mature
https://www2.deloitte.com/insights/us/en/topics/digital-transformation/digital-transformation-strategy-digitally-mature


[24] S. Moore. (2016) 7 options to modernize legacy systems.
Gartner. [Online]. Available:
https://www.gartner.com/smarterwithgartner/
7-options-to-modernize-legacy-systems/

[25] S. Newman, Building microservices: designing fine-grained
systems. ”O’Reilly Media, Inc.”, 2015.

[26] T. Reenskaug, “The Model-View-Controller (I) Its Past and
Present,” in JavaONE, 2003.

[27] E. Ries, The lean startup: How today’s entrepreneurs use continuous
innovation to create radically successful businesses. Crown Books,
2011.

[28] S. Roychoudhury. (2015) Legacy enterprise systems
modernization: Five ways of responding to market forces.
Cognizant. [Online]. Available:
https://www.cognizant.com/whitepapers/
legacy-enterprise-systems-modernization-five-ways-of-\
responding-to-market-forces-codex1377.pdf

[29] S. J. Russell and P. Norvig, Artificial intelligence: a modern
approach. Malaysia; Pearson Education Limited,, 2016.

[30] S. Sinek. (2009, September) How great leaders inspire action.
[Online]. Available: https://www.ted.com/talks/
simon sinek how great leaders inspire action

196

https://www.gartner.com/smarterwithgartner/7-options-to-modernize-legacy-systems/
https://www.gartner.com/smarterwithgartner/7-options-to-modernize-legacy-systems/
https://www.cognizant.com/whitepapers/legacy-enterprise-systems-modernization-five-ways-of-\responding-to-market-forces-codex1377.pdf
https://www.cognizant.com/whitepapers/legacy-enterprise-systems-modernization-five-ways-of-\responding-to-market-forces-codex1377.pdf
https://www.cognizant.com/whitepapers/legacy-enterprise-systems-modernization-five-ways-of-\responding-to-market-forces-codex1377.pdf
https://www.ted.com/talks/simon_sinek_how_great_leaders_inspire_action
https://www.ted.com/talks/simon_sinek_how_great_leaders_inspire_action


[31] S. Toyoda. (1930) The 5 whys. [Online]. Available:
https://en.wikipedia.org/wiki/5 Whys

[32] M. Utting and B. Legeard, Practical model-based testing: a tools
approach. Elsevier, 2010.

[33] M. Völter, T. Stahl, J. Bettin, A. Haase, and S. Helsen,
Model-driven software development: technology, engineering,
management. John Wiley & Sons, 2013.

197

https://en.wikipedia.org/wiki/5_Whys


198



A. Change Log
This is the first version so no change log. Yeww!

199



200



B. Codebots Field Trials
The codebots field trails are an experiment we conducted to test the
following hypothesis: We predict a team with a Codebot will provide
more value to a software development project than a team without a
Codebot in the same amount of time. The way the experiment worked
is shown in Figure B.1. In the first week we had a planning session
to work on the scope of the project. We then had one of our squads
work on the project for a time-boxed week to see how much of the
project we could complete. The final step was the review where we
would present the results to the participant and ask them to do a
survey and provide feedback on the outcome.

Figure B.1: Time Box
201



We invited a number of companies to the trial and had six
participant companies with one field trial project per company. The
companies ranged in size from 40 to 5600 employees and some are
listed on the stock exchange. There were multiple people involved
from each company, making a total of 21 people that filled out the
survey, with an average experience in software projects of 14.83
years. Over all six experiments, the codebots wrote a total of
143,453 (93%) lines of code and the humans wrote 10,864 (7%).
Figure B.2 shows the code being developed over the five days.

Figure B.2: Bot vs human written code
The other part of the survey was to ask the 21 people how fast

a team of comparable size would have taken them internally in the
organisation to complete the same amount of work. For the one
202



week’s work, the average time it would have taken their team to
complete was 8.3 weeks. With 55% saying that the codebots were
faster and 45% said much faster (the highest result). The average
experience rating was 9.23 out of 10. Of the behaviours listed in
Appendix C, the most popular behaviours we used were CRUD,
forms, workflows, dashboards, mobile apps, and developer API.

Figure B.3: Statistics
Without divulging the companies involved, here are a couple

of project descriptions to understand what the projects involved.
For one project, the codebots forms behaviour was linked to a chat
interface. That interface had an API linking to the participants
Customer Relationship Management (CRM) in order to verify a
users identity. Upon verification, the user could request

203



information relating to their account. This was wrapped in an
iframe ready to be deployed on any web page. For another project,
the wizard and geolocation behaviours were used to create an
application that performs business-specific calculations. That
application was deployed to iOS, Android, mobile web and as a
progressive web app. The data was persisted and historical data
could be exported as a CSV.

We will be conducting future rounds of the Codebots Field
Trials. If you are interested in participating, please contact BB8 at
support@codebots.com. These are the droids you are looking for ...

204



C. Behaviours
Behaviours are cool things that a codebot can do. In Section 4.1, we
discussed the state and behaviour of a software application. The
state of an application is the data and the behaviour is what we do with it.
So, we build our codebots with behaviours that solve common
business scenarios. In the table below, we have listed in
alphabetical order some of the behaviours that our codebots have
implemented. It is important to note that not all the codebots have
implemented all the same behaviours, but there are some
behaviours that are implemented as they are the most common:
CRUD, Dashboards, Developer API, Forms, Import / Export,
Timelines, and Workflows.

205



Board Use a kanban-like board where you can
visually depict work at various stages of a
process.

Calendar Display a calendar to be used for appoint-
ments, scheduling resources, or booking
services

Chat Allow direct, group, channel messaging
between users.

CRUD The ability to Create, Read, Update and Delete
your data.

Dashboards Display a snapshot of your data with drill-
down and segmentation capability.

Developer
API

Use OpenAPI swagger definitions controlled
through the security diagram.

206



Online /
Offline

Store data locally on a mobile-app and sync
when the device reconnects to the internet.

Financials Track credits and debit, keep a comprehensive
ledger.

Forms Create documents, forms and surveys with
skip/show logic abilities.

Gamification Gamify your application for higher engage-
ment.

Geolocations
& positions

Record geographical position, track and filter
data.

Import /
Export

Import and export data from your application
via CSV.

Legacy
Database
Migration

Transfer your data from a legacy database to
a new application.

Mobile-
apps

Build mobile-apps for iOS and Android
alongside your web application.

207



Payment Use some preconfigured payment gateways or
develop your own.

Reminders
& Notifica-
tions

Send push notifications to a mobile-app or
other feed like a SMS. Set reminders on
timelines to send notifications.

SaaS Deploy the application for SaaS using a multi-
tenant architecture.

Shared Li-
brary

Share data across multiple organisations or
an entire industry if you are using the SaaS
behaviour.

Social
Integration

Push content to your social media channels.
Display a feed of your previous activities.

Timelines Show data on a timeline to reflect history and
allow forward planning.

Workflows Create a configurable workflow to allow
entities to progress through a series of steps.

208



D. Agile Manifesto
The Agile manifesto can be found at http//agilemanifesto.org. The
text from the website is shown below.

We are uncovering better ways of developing software by
doing it and helping others do it. Through this work we have come
to value:
Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we
value the items on the left more.

The twelve principles are:
• Our highest priority is to satisfy the customer through early

and continuous delivery of valuable software.
• Welcome changing requirements, even late in development.

Agile processes harness change for the customer’s competitive
advantage.

• Deliver working software frequently, from a couple of weeks to
a couple of months, with a preference to the shorter timescale.

• Business people and developers must work together daily
throughout the project.

209

http//agilemanifesto.org


• Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get the
job done.

• The most efficient and effective method of conveying
information to and within a development team is face-to-face
conversation.

• Working software is the primary measure of progress.
• Agile processes promote sustainable development. The

sponsors, developers, and users should be able to maintain a
constant pace indefinitely.

• Continuous attention to technical excellence and good design
enhances agility.

• Simplicity–the art of maximizing the amount of work not
done–is essential.

• The best architectures, requirements, and designs emerge
from self-organizing teams.

• At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly.

210



E. Risk Register
In this appendix you will find the top risks for a project. These risks
have been identified from both our own experience and the
experience of external projects done by our partners. The risks will
change depending on the context of a specific project. For each risk
we have included the threat for both Agile and Waterfall style
projects. In Figure E.1, is the axis and values we use for likelihood
and impact.

Figure E.1: Risk matrix

211



#1 Inaccurate Estimates

Description: The length of the project, milestone or
iteration is under estimated by the project
group.

Likelihood: Very Likely
Impact: Severe
Threat (Agile): Medium
Threat (Waterfall): High
Mitigation Strategy: • Overestimate and overdeliver

• Elaborate only the Work that has
immediate priority
• Tech Spikes
• The Estimation Process
• Allocation Factor
• The Cone of Uncertainty
• Success Sliders

Measure: • Burn-down chart
• Iteration Report
• Services Agreement
• Scope Document

212



#2 Scope Variations

Description: The scope of a iteration is changes after a
timeframe has been agreed.

Likelihood: Very Likely
Impact: Severe
Threat (Agile): Low
Threat (Waterfall): High
Mitigation Strategy: • Short manageable Iterations

• Set realistic goals and manage
expectations
• Elaboration of only prioritised work

Measure: • Variation Metric (% scope changed)

213



#3 End-user Engagement

Description: Users resistance to change and conflict
between users.

Likelihood: Likely
Impact: Severe
Threat (Agile): Medium
Threat (Waterfall): High
Mitigation Strategy: • User testing and surveys

• Focus groups
• Frequent Releases
• Beta Testers

Measure: • Traffic Volume

214



#4 Stakeholder Expectations

Description: As time progresses, all stakeholder expec-
tations must be managed.

Likelihood: Likely
Impact: Significant
Threat (Agile): Medium High
Threat (Waterfall): Medium High
Mitigation Strategy: • Effective communication

• Approval and acknowledge from the
partner
• The Way of Working

Measure: • Meeting Attendance
• Response times

215



#5 Poor Quality

Description: The quality of what is delivered does not
match up with stakeholder expectations.

Likelihood: Likely
Impact: Significant
Threat (Agile): Medium
Threat (Waterfall): High
Mitigation Strategy: • User Acceptance Criteria

• Dedicated Product Manager
• The Way of Working

Measure: • Traceability matrix

216



#6 Poor Productivity

Description: The project group is falling behind on the
planned time frames.

Likelihood: Unlikely
Impact: Significant
Threat (Agile): Medium
Threat (Waterfall): Medium High
Mitigation Strategy: • People culture

• Set achievable timeframes
• Direct and Constant Product Manager

Collaboration
• Working at a sustainable pace
• The Way of Working

Measure: • Burn-down chart
• Iteration Report

217



#7 Inadequate Risk Management

Description: The project specific risks are not managed
by the stakeholders.

Likelihood: Possible
Impact: Moderate
Threat (Agile): Medium
Threat (Waterfall): Medium
Mitigation Strategy: • Risks analysis included in start and end

of Iteration meetings
• Include risk analysis into learnings

Measure: • Including Risk in estimations
• Risk Register on Estimations and in the
backlog

218



#8 Low Partner Engagement

Description: The response time from the partner is slow
and impedes agreed timeframes.

Likelihood: Possible
Impact: Significant
Threat (Agile): Medium High
Threat (Waterfall): Low
Mitigation Strategy: • Clear agreements

• Effective communication around
timeframes
• Effective selection of Delivery and project
goals/priorities

Measure: • UAT period

219



#9 Inadequate Human Resources

Description: A stakeholder must leave the project
unexpectedly.

Likelihood: Unlikely
Impact: Moderate
Threat (Agile): Low
Threat (Waterfall): Medium
Mitigation Strategy: • Up-to-date documentation

• On-boarding with learning guide
• The invoice schedule and team utilisation
monitoring

Measure: • Available bench

220



#10 Lack of Ownership

Description: It must be clear who is responsible for what
and when it is to be delivered.

Likelihood: Unlikely
Impact: Moderate
Threat (Agile): Low Medium
Threat (Waterfall): Low Medium
Mitigation Strategy: • Set responsibilities for stakeholders

• Clear communication channels
• User Acceptance Criteria

Measure: • Meeting notes and action items

221



9 780648 657101 >

ISBN 978-0-6486571-0-1


	cover-digital
	ContinuousModernisation.pdf
	Preface
	Introduction
	Hypothesis Statement
	Business Agility
	Software/People Fit
	The Insanity of Legacy Systems
	Knowledge is Power
	Bots that Code
	Future of Work
	Summary

	Legacy Systems
	Root Causes
	Inescapable Truths
	Firecracker migration pattern
	Divide-and-Conquer Migration Pattern
	Summary

	Strategy and Tactics
	Science + Iterations
	Community
	Microservices
	Fog of War
	Modelling
	Summary

	Codebots
	State and Behaviour
	Entity Diagram
	User Interface (UI) Diagram
	Security Diagram
	Development Target
	Testing Target
	Summary

	Migration Kit
	How to Use this Kit
	Reverse Engineering Requirements
	Experimental Framework
	Community Onion
	Managing Expectations
	Story Estimation
	Entity and Requirements Traceability Matrix
	Database Migration
	Spreadsheet Migration
	PDF Migration
	Bubble Context and Anticorruption Layer

	Conclusion
	Glossary
	Acronyms
	Bibliography
	Appendix Change Log
	Appendix Codebots Field Trials
	Appendix Behaviours
	Appendix Agile Manifesto
	Appendix Risk Register
	#1 Inaccurate Estimates
	#2 Scope Variations
	#3 End-user Engagement
	#4 Stakeholder Expectations
	#5 Poor Quality
	#6 Poor Productivity
	#7 Inadequate Risk Management
	#8 Low Partner Engagement
	#9 Inadequate Human Resources
	#10 Lack of Ownership


	cover-digital
	Blank Page
	Blank Page

