

Learn more about our Codebots platform in the book by

Eban Escott & Indi Tansey.

Head to www.codebots.com for more information.

The Continuous Modernisation Playbook

Copyright 2019 Codebots

4

Contents.

Way of Working. 6

Brief. 10

 Brief details. 12

Scope. 14

 Scope details. 16

 Scope timeline. 18

 Cone of uncertainty. 20

 Discovery kit. 22

 Capturing requirements. 24

 Scope estimations. 26

 Time estimations. 28

 Risk multipler. 30

 Allocation factor. 34

 Trim the tail allowance. 36

 Tech spike allowance. 38

 Development approach. 40

5

Development. 42

 Development details. 44

 Iterations details. 46

	 Definition	of	Ready.	 50

	 Acceptance	criteria.	 52

	 Definition	of	Done.	 54

	 Conducting	UATs.	 56

	 UAT	kickback.	 58

 Iteration guarantee. 60

Release. 62

 Release details. 64

 The environments. 66

 Releasing mobile apps. 68

 Checklists. 70

Support. 72

 Support details. 74

 Tickets. 76

 Stages of support. 78

Experimenting. 80

Evolving a codebot. 84

	 Identifiy	an	opportunity.	 86

 Starting the evolution. 88

 let the bots take over. 90

 Business as usual. 92

6 The Way of Working

Way of Working.

This Way of Working is a

compilation of the process,

practices, tools and principles

which we recommend a team

follows throughout the life of

a product. The contents of this

book come from many years of

experience of building software,

the result of both successes

and failures, and our learnings

from both. This book is our

recommendation on how a

software project team can plan,

build and release a product,

ensuring customer and team

satisfaction along the way.

Within the context of this Way of

Working, when we say “customer”

we refer to the person or persons

that engage a project team for the

intention of developing a piece

of software. This entity could be

internal or external but they have

a vested interest in the success

of the project and a say in its

direction.

7Way of Working

8 The Way of Working

Broadly	speaking,	a	project	is	broken	into	five	phases:	Brief,	Scope,	

Development, Releases, and Support. Normally, the project will go

through	the	first	four	stages	with	the	same	project	team,	before	being	

handed over to support engineers.

Depending on the size of a project and the velocity required, we have

found that a small team consisting of a Web Engineer and a Testing

Engineer pairing (Senior & Junior) along with a UX Designer work

efficiently	together	as	a	project	team.	This	project	team	is	overseen	by	a	

Team Lead (Scrum Master) who can manage multiple projects and teams

depending on the size of the projects. If greater velocity is required for a

project, then additional developer pairings can be engaged for increased

productivity.

9Way of Working

Our company mission is to

discover new boundaries.

Through experimentation

and the scientific method,

we are constantly evolving

this Way of Working in

order to increase the

probability of creating

successful projects.

10 The Way of Working

Brief.

The goal of the brief stage is

to understand the problem (or

opportunity) and set the criteria

for its success.

In the brief stage, the problem is

unpacked and an initial roadmap is

presented. The roadmap indicates

a broad sense of how the project

vision can be reached.

11Brief

12 The Way of Working

Brief details.

The account manager:

• Talks	to	customers	about	project	fit.

• Arranges to have a brief meeting with the

customers.

The account manager is responsible for:

• Creating and printing the brief document.

• Presenting the brief document to the partner.

• Proposing the initial pathway.

• The account manager is the main facilitator of

this stage, though they may call in other team

members to participate.

• The length of time required varies, though this

process normally happens over the course of a

single week.

13Brief

• Initial	phone	call	(approx.	15	minutes):	The	

account manager establishes what the problem is

and arranges a time for the discovery workshop.

Discussion around what will be done during the

workshop.

• Discovery	workshop	(approx.	2	hours):	Used	

to discover enough about the problem to get

a broad overview of what may be required for

the solution. The team should gather enough

information to be able to propose an initial

pathway.

• Presentation meeting – to present our realisation

of the project in the form of a printed brief

document.

Our Discovery Kit

14 The Way of Working

Scope.

In the scope stage, the problem or

opportunity is explored further

and a solution is proposed. We

have found it is best to move in

sequence through the discovery,

inspiration, ideation, and

realisation stages. The project plan

follows a divergent-convergent

approach to problem solving. The

plan diverges at the beginning

during the discovery phase to

ensure as many solutions are

considered as possible, before

then converging at the realisation

stage with a solution that feels

provides the most value.

15Scope

16 The Way of Working

Scope details.

• There is a signed an agreement about the agreed

minimum and maximum length of time for this

stage.

• The project has completed the brief stage.

• The account manager presented all available

knowledge and artefacts to the scoping team in a

pre-scope meeting.

• The scoping team members have read the brief

document.

• The recommended project team should consist

of a least one UX designer, testing engineer,

and web engineer who are led by a team lead,

accompanied by an account manager.

• Typically, this stage can last anywhere between

2	and	5	weeks,	though	there	is	a	preference	for	

shorter and smaller scopes to encourage iterative

development.

17Scope

The team delivers:

• A scope document

• A roadmap

• A user stories backlog

• A schema

• Scope estimations

• A protoype of the solution

• Any other artefacts produced from discovery kit

activities

The account manager delivers:

• A scope presentation for the partner

One or two scope meetings per week, normally going

for approximately 2 hours.

• Our Discovery Kit

• Our estimation tool

18 The Way of Working

Scope frequency.

The initial scope for a project generally prepares the project team for

the	first	one	to	two	milestones	of	development,	rather	than	an	entire	

roadmap.	This	leaves	the	project	open	to	adaptation	and	flexibility,	rather	

than being locked onto one path. Once these milestones have been built,

most projects will pause development, and re-enter scoping phases to

discover the next milestones of work. The scoping timeline diagram shows

different project timeline examples.

Through past experience, we have found that it is important that small

batches of work are scoped during this time, so that a project team

can quickly adapt in response to user feedback or changes in business

processes. This will prevent redundant features from being scoped or

code that requires refactoring.

19Scope

20 The Way of Working

Cone of uncertainty.

The Cone of Uncertainty is a depiction of the level of uncertainty around

the length of time required to complete a project based on the amount of

knowledge at the beginning of a project, and the risk of the project time

blowing out due to this uncertainty.

Before the beginning of a project, there is a large amount uncertainty.

As no work has been completed yet, the project team has only past

experience to base their estimations on. In software development, no two

projects are the same, meaning that even with years of experience it is

impossible to provide an accurate estimation. When combined with the

fact that product requirements are likely to change over time, it makes it

difficult	to	provide	an	accurate	estimation	to	the	product	manager	in	the	

beginning.

For this reason, we recommend that the team focuses only on a small

amount of work at any time. This gives the team a chance to become more

familiar with the product and its requirements, and once it comes time to

estimate	again,	they	can	be	that	much	more	confident	about	how	long	the	

future work will take.

21Scope

22 The Way of Working

Discovery kit.

The due diligence of any product expert is to deliver a product that

has value. The tool to use to help reach this goal is our Discovery Kit.

The Discovery Kit contains a range of activities that can be conducted

throughout the scoping process to help clearly identify the problem

an application needs to solve and how to best achieve this for the

applications users.

While some customers may arrive with a reasonable level of clarity

around the problem they are trying to solve, these tools help unpack the

problem in a way that everyone in the project team can understand. This

then enables you to use your expertise to propose the best solution.

23Scope

24 The Way of Working

Capturing requirements.

Since customers can express the requirements of their software in many

different ways, there are many methods for capturing requirements.

Whether it happens verbally during a meeting or via diagrams on a

whiteboard,	the	aim	of	these	strategies	remains	the	same:	to	achieve	a	

shared understanding of what needs to be built.

Capturing these requirements accurately is important for decreasing the

risk	of	flawed	iteration	estimates	(though	the	risk	cannot	be	eliminated	

completely). A strategy for capturing these requirements is to understand

the user intent through epics and user stories, which are then captured

and maintained in a requirements backlog.

Alongside the stories and epics, capturing acceptance criteria and

assumptions against each one to ensures that the whole team has a

thorough understanding of what is required. This reduces the likelihood of

miscommunication or misunderstandings affecting the estimations. Risks

are also captured so they can be considered when estimating.

25Scope

Epics
An epic is a high-level theme or feature that is used to categorise related

stories.	An	epic	contains	the	following	information:

• Summary

• User personas involved

• Acceptance criteria for each persona

Stories
A	story	is	a	fine-grained	requirement,	written	from	a	user’s	perspective.	

Each	story	belongs	to	only	one	epic.	A	story	is	the	classification	of	tasks	

which are delivered during development, so they must be small enough to

be completed within one iteration (i.e. you must be able to build it in less

than	2	weeks).	A	story	contains	the	following	information:

• User	story:	As a [user persona] I want to [do something], so that

[reason for task].

• Background of story

• Acceptance criteria

• Implementation notes

26 The Way of Working

Scope estimations.

Estimations are just that - estimations. For any person that has dealt with

software, they know anything unexpected could happen to throw off a

project’s	timeline.	The	only	time	you	can	ever	predict	an	exact	delivery	

time is after it has been delivered.

The estimations which are provided to customers offer a plan for the

project, taking into account the difference between an ideal time estimate

and	a	realistic	estimate.	Using	a	scientific	approach,	we	have	formulated	a	

recommended estimation method which takes into account past project

experiences,	alongside	the	project’s	complexity	and	risk.

27Scope

28 The Way of Working

Time estimations.

Once scoping is complete, the team estimates the time units they believe

are required for a typical team member to complete each story. Our time

estimation values follow a precise, Fibonacci-like sequence. This is a

standard practice in agile estimation processes (like estimation poker) to

ensure	that	developers	don’t	get	too	caught	up	in	a	getting	a	specific	time,	

and instead focus on the general size of a task.

1 hour

2 hours

4 hours

1 day (8h)

2 days (16h)

4 days (32h)

1.5	weeks	(64h)

3.5	weeks	(128h)

29Scope

30 The Way of Working

Risk multiplier.

The more complex and unfamiliar a story is, the higher the risk that the

development time will be underestimated. To ensure that the risk is

appropriately	considered	in	estimations,	two	multipliers	are	included:	

unfamiliarity	and	complexity.	Both	multipliers	are	quantified	with	a	

number	rating	between	1	and	5.

Unfamiliarity
The unfamiliarity multiplier takes into consideration the unknowns of the

project. When estimating each task, team members should consider the

following:	experience	with	similar	tasks,	available	resources,	and	whether	

it	uses	new	or	existing	technologies.	For	example:

• If the developers have worked with the technology before and are

quite	confident,	then	the	risk	score	would	be	low	(probably	one).

• If	the	developers	haven’t	worked	with	the	technology,	but	someone	

else in the company has, then the risk score would be moderate

• If no-one in the company has ever worked with the technology before,

then	the	rating	would	be	quite	high	(probably	five).

31Scope

Complexity
The	complexity	multiplier	quantifies	how	intricate	and	challenging	the	

task may be. When estimating, the team should consider how many

other parts of the product are affected by this task, how complicated the

development will be, and how likely this requirement is to change (i.e. how

confident	the	customer	is	about	this	task,	and	whether	new	information	

may	come	to	light	and	change	it).	For	example:

• If the story uses a feature which has been developed in the past and it

won’t	require	any	changes,	then	the	complexity	would	low	(probably	

one).

• If	the	story	can	use	an	old	feature,	but	it	would	need	modifications	

to meet the requirements, then the complexity score would be

moderate.

• If the story requires completely custom development and extensive

testing,	then	complexity	score	would	be	quite	high	(probably	five).

Once the two factors have been considered, they are multiplied together

to	get	a	risk	score	out	of	25.	Depending	upon	this	score,	it	may	be	

either low, medium or high risk. As a rule, a story cannot enter into a

development iteration unless it has a score of eight or lower.

32 The Way of Working

The risk score is then passed through a formula to create a multiplier

which is applied to the time estimate.

[Time	with	risk	=	estimated	time	*	(1	+	((unfamiliarity	*	complexity)	/25))]

Once there is an estimation that includes risk, there are three other

factors that need to be considered before the estimation process is

complete.

*These modifier amounts are a recommendation based on our experience

33Scope

34 The Way of Working

Allocation factor.

It is a fact of any workplace that employees are not able to dedicate 100%

of their time to their primary role at work. Activities such as meetings,

assisting colleagues and alternate side projects take up their time and

should be recognised when estimations are being considered. This is done

by applying what we call an allocation factor, which assumes that any

project team is able to work on active development for 80%* of their time.

Once	there	is	an	estimation	including	risk,	it	is	then	multiplied	by	1.25*	to	

calculate an estimation which also includes allocation factor.

*These modifier amounts are a recommendation based on our experience

35Scope

36 The Way of Working

Trim the tail allowance.
(Iteration N)
The trim the tail allowance is used to add a chunk of time into the project

to account for any bugs or minor improvements which may pop up.

Experience has shown us that every project requires periods of cleaning

up time where the team needs time to pause on active development,

and instead focus on the work they have already done. Whether it is

fixing	minor	bugs	which	have	been	put	off,	addressing	technical	debt,	or	

implementing minor improvements which have come from user feedback,

it’s	important	that	they	get	some	time	to	clean	up.

The trim the tail factor calculates a period of time which can be used

throughout	the	project’s	timeline.	This	creates	a	bank	of	time	which	can	

be	drawn	from	at	any	point	in	the	project’s	timeline.	When	the	team	lead	

and the customer agree it is required, the standard development progress

can be paused, and the team can enter into an iteration N. The length

of this iteration can vary depending upon the amount of work which is

required. This period of time is then taken from the bank and the running

tally is updated.

Currently,	the	trim	the	tail	is	calculated	as	a	1.25*	multiplier	on	the	time	

estimate (including risk and allocation factor).

*These modifier amounts are a recommendation based on our experience

37Scope

38 The Way of Working

Tech spike allowance.

Similar to the trim the tail allowance, the tech spike allowance creates a

bank of time which can be drawn upon when the project team needs it.

The tech spike allocation is used as a chance for the team to take time to

research or test concepts before they estimate properly on something.

Typically, it is a project team member that indicates the need for it, though

all tasks with a risk rating higher than eight must be de-risked before

estimating, which is almost always reduced through the completion of a

tech spike.

A	tech	spike	can	be	included	in	the	development	process	in	two	ways:	

the issue can be moved into a later iteration, and a tech spike can be

put	into	the	next	iteration	in	its	place	(this	option	doesn’t	interrupt	the	

development	flow).	If	the	issue	being	estimated	has	a	high	priority	and	

cannot be moved into another iteration, then the other option is that a

tech spike for the issue can slot in before the next iteration as a chance to

research before estimating.

Currently,	the	tech	spike	allocation	is	calculated	using	a	10%*	modifier	on	

an estimation including risk, allocation and trim the tail factors.

*These modifier amounts are a recommendation based on our experience

39Scope

40 The Way of Working

Development approach.

Trade-off sliders are used as a way of handling and communicating

expectations between the stakeholders within a project. They display

how	the	choice	made	around	flexible	and	fixed	options	can	affect	the	

other options available. This can help inform the decision around what

development approach will be used for the project. By selecting one of the

values for three options, it shows what is available for the other two and

lets the stakeholders decide where their priorities lie.

Note:	No	two	crosses	can	be	in	the	same	column.

41Scope

In	the	case	of	a	fixed	scope	(where	every	requirement	is	a	must-have),	

all stories are delivered. However, since we are trying to estimate things

which are far off into the future, it is harder to get an accurate estimation.

In	the	case	of	fixed	time	(and	therefore	fixed	budget),	the	team	strives	to	

deliver the tasks which hold the most value, whether they were in original

requirements or not. This process is the most open to being adaptable.

This is an older developmental approach. The scope continues until all

requirements are listed and estimated. Due to the large range of possible

risks,	this	estimation	becomes	signifi-cantly	more	difficult	and	therefore	

results in a much longer timeline than the others.

time = estimation

± cone of

uncertainty

Time	is	fixed

Scoping time is

unknown

42 The Way of Working

Development.

The development stage is the part

of the cycle where the product

is actually built and tested. The

project team delivers early

and often, striving to maximise

learning along the way. This

stage is comprised of iterations

which repeat until development

is	finished.	Every	iteration	

consists of a series of meetings

and checkpoints to ensure both

customer and team satisfaction,

providing everyone with a chance

to make suggestions and learnings.

43Development

44 The Way of Working

Development details.

Before going into the development stage, a project

must have:

• Completed the scoping stage.

• A	backlog	of	stories	in	the	first	milestone.

• A roadmap for the project.

• The	details	required	for	hosting	the	product:	

• DNS information.

• Email hosting details.

• If the product is an app, relevant app store

account details.

• A project team consisting of at least one UX

designer, web engineer and testing engineer, led

by a team lead.

• An account manager to assist with managing the

partnership and invoicing.

• A series of meeting notes and iteration reports,

produced for each iteration.

• A completed Transition to Support document for

the support team.

• A product which has passed all acceptance

criteria and has been released to production.

45Development

User acceptance testing session:

• Conducted after each iteration has been

completed.

• A chance for the customer to review the work

which was done and make sure it meets the

requirements

• Typically done between the testing engineer and

the customer

Almost all the meetings in this stage come from the

iteration cycle, outlined in the next section. (Please

see the following table)

User Testing Interviews

• Conducted after an iteration or milestone has

been completed.

• Used to validate that what was built provides

value to the user, and users can easily understand

how to use the product.

46 The Way of Working

Iteration details.

Before starting an iteration, the following things

must be done:

• All issues in the iteration plan must meet the

Definition	of	Ready (see page 50).

• A planning session has been completed and the

meeting notes sent to the customer

• An elaboration must be completed internally to

ensure	all	team	members	are	confident	of	the	

tasks.

• An estimation has been calculated and

communicated to the customer.

• A	final	iteration	plan	has	been	proposed	and	

accepted by the customer.

• At least one development team which is available

for the whole iteration, led by a team lead.

• An account manager to assist with managing the

partnership.

• An iteration report, detailing how the iteration

progressed and what was delivered.

• Planning/Review meeting notes

• Retrospective actions

• The product is released to beta for UATs

47Development

The following meetings and ceremonies appear in the

development diagram (see page 43).

Planning Session

• Before each iteration, the team meets with the

customer	to	define	the	iteration	goal	and	choose	

priorities for the issues.

• The	team	also	works	with	the	customer	to	define	

acceptance criteria for each task.

• Normally, this meeting is also merged with the

review meeting for the previous iteration so that

there	aren’t	two	meetings	in	one	day.	

Elaboration Session

• This is an internal meeting within the project

team. Typically, the account managers do not

attend as the talk often gets quite technical, and

they	many	influence	the	estimations.	

• The purpose of this meeting is for the team to get

more technical about each issue and ensure that

all members understand both the requirements

and the solution which will be implemented.

• At the end of the meeting, the team produces

estimations against each issue.

• All issues included in the plan must satisfy the

Definition	of	Ready (see page 50).

• Depending on the risk ratings of the issues, the

team may need to use a tech spike in order to

reduce the risk (see tech spikes on page 39).

48 The Way of Working

• Once	the	meeting	has	finished,	the	squad	lead	

and account manager contact the customer

to tell them the estimations and projected

timeframe.

• At	this	point,	the	customer	will	either	be:	

• Happy to proceed, and the iteration will start

with the estimated end date, or

• Further decisions will need to be made

around the iteration plan (i.e. larger tickets

may be removed to shorten the projected

timeline.) before it can be kicked out.

Daily Huddle

• Every day the team members have what we call a

daily	huddle,	where	they	discuss:	

• What they completed yesterday.

• What they plan to complete today.

• If they have any blockers inhibiting their

work, and

• if there are any risks that need to be called

out.

Retrospective Sessions

• At the end of each iteration, the development

team conducts a retrospective session. The

retrospective is used as a chance to have a

reflection	on	how	the	iteration	went.	

• The	team	identifies	actions	for	improvement	

going	forward.	These	actions	could	be:	

• Experiments or improvements which could

be made part of company processes.

• New features which should be called out

49Development

Definition of Ready

• The	Definition	of	Ready	ensures	that	we	are	

ready to commit to the iteration.

• Each issue must meet all criteria before it can be

started on.

• See page 50 for more information about the

definition	of	ready.	

Definition of Done

• The	Definition	of	Done	ensures	that	the	issues	in	

the iteration are ready to be released to beta.

• See page 54 for more information about the

definition	of	done.	

Tech Spike

• The development team may need to make use of

the tech spike allowance to de-risk issues.

• See page 39 for details on tech spikes

• New tech spikes or tasks to include in the

backlog

Review Session

• Normally, this is conducted at the same time as a

planning session.

• The team presents the completed work from the

iteration to the customer (UATs get done in a

separate meeting).

• The team talks about what went well and what

impeded development progress.

• This is the chance to review how the project

is progressing and whether we are on track to

deliver the milestone on time.

50 The Way of Working

Definition of ready.

The	Definition	of	Ready	helps	ensure	a	project	team	is	as	prepared	as	

possible to commence an iteration. It should be ensured that each user

story	adheres	to	the	following	checklist:

51Development

Is an appropriate size, aiming for less
than half the iteration length.

If required, has a preliminary UI/UX
plan agreed to by the customer. This
could be a UI design, prototype, sketch,
or anything which can guide the project
team on what it will look like.

Is written as a proper user story

The knowledge base has been reviewed
for existing and previous solutions,
ideas, or insights which may assist in the
development of this issue.

Has a risk rating of eight or lower.

52 The Way of Working

Acceptance criteria.

Acceptance criteria are written against every individual ticket in a project.

They	may	be	initially	defined	during	the	scoping	stage,	but	all	tickets	

must have them before they go into active development. The acceptance

criteria live up to their name, as they are used as the criteria which must

be met in order for a ticket to be considered complete.

At the start of each iteration, during the planning session, the team

lead assists the customer to write a list of criteria against each ticket.

Depending on the size and complexity of each ticket, the list may be small

or large. What is important is that the customer is directly involved with

the writing of this criteria, as this is what determines whether a ticket is

done or not. If they wish to change the ticket once the criteria are agreed

upon, then it must be submitted as a change request (rather than the

ticket being considered incomplete).

Occasionally, a need will arise where the criteria may need to get changed.

For example, the project team may discover that a certain point may be

incredibly complex and will blow out the estimated time. In these cases,

the customer should be contacted and informed of this issue, and it is up

to them around how they wish to proceed. They could either chose to

remove the point altogether, alter it slightly so it is less complex, or leave

it	in	and	accept	the	longer	ticket	length.	If	either	of	the	first	two	options	is	

chosen, then it may be entered as a ticket of its own in the project backlog

so it can be addressed later.

53Development

During an iteration, the team should consult with this list before and after

they	have	finished	developing	and	use	it	as	a	list	of	the	requirements	that	

they should build to. Anyone who tests the ticket will also make use of the

list. A ticket cannot be considered done until all items have been checked

off.

54 The Way of Working

Definition of done.

The	Definition	of	Done	checklist	ensures	that	everything	that	is	

developed	is	delivered	to	a	high	standard	and	meets	the	pre-defined	

criteria. For all stories to be considered done while in an iteration, they

must	comply	with	the	following	criteria.	The	checklist	is	as	follows:

55Development

This story has automated tests which
are passing.

The implementation has been code
reviewed.

All acceptance criteria have been
satisfied.

The code has been merged into develop
in preparation for a beta release.

56 The Way of Working

Conducting UATs.

Once an iteration has been completed, it requires User Acceptance Tests

(UATs) to be conducted by the customer against all the issues which

were completed (and deployed onto beta) during the iteration. User

Acceptance Testing involves the product manager reviewing each ticket

which	was	completed	and	confirming	that	it	meets	the	acceptance	criteria	

which	they	defined	at	the	beginning	of	the	iteration.

This	can	be	done	in	two	ways:	the	first	involves	the	product	manager	

joining a member of the project team in a walkthrough session in person.

This allows a member of the team to see any issues which occur as they

occur, which can be very valuable when testing. This is the preferred

method, as it ensures that the tests are completed quickly and completely,

and the team can be sure that any issues which occur are truly issues, and

not just user error.

The alternative is for the customer to do this process in their own time

and	submit	their	findings	remotely.	This	has	advantages	in	that	if	they	

struggle	to	make	into	the	office	or	aren’t	available	during	work	hours,	it	

can still be completed in a timely manner.

57Development

58 The Way of Working

UAT kickback.

The results of a UAT session are recorded against each issue, and if all

pass, then a release to production can be prepared (see Releases section).

However, it is not uncommon for a customer to provide feedback which

needs to be addressed. Depending on the urgency of the change, it can be

handled	in	three	ways:

• Urgent Resolution - This is when the customer requires an urgent

fix	which	must	be	resolved	in	the	current	beta	version	(i.e.	before	it	

reaches the production environment). In this situation the project

team	will	pause	the	current	iteration	and	apply	the	fix.	It	should	be	

noted that this will create a delay for the end of the next iteration.

• Next Iteration Resolution -This is when the customer is willing to wait

for	the	fix	to	be	in	the	next	version	of	the	beta	environment.	In	this	

situation the defect or minor change request will be added to the next

iteration’s	backlog.

• Backlog Resolution - This is when an issue has been deemed to be a

low priority. In this situation the UAT feedback will be added to the

product backlog and be brought up during a future planning session

for.

59Development

60 The Way of Working

Iteration guarantee.

Although there may not be certainty around the amount of effort

required to complete a future milestone, there should have a good deal of

certainty around the effort required for the next iteration. This provides

an opportunity to give the customer some piece of mind and also provides

a selling point.

Holding planning and elaboration sessions, and possibly completing

further analysis through tech spikes, should make the team reasonably

confident	that	they	can	hit	their	estimated	deadline	for	the	next	iteration.	

As a result of this, a Guarantee can potentially be placed on the iteration

around the stated estimation.

The Iteration Guarantee states that if it is estimated an iteration is going

to take x days to complete, should the Iteration take x + 20% days, the cost

of the overrun is not passed on to the customer. For example, if the project

team estimates the next iteration will take ten days and it ends up taking

thirteen, the customer will not be charged for the one day which overran.

This	time	owed	will	be	noted	and	can	refunded	from	the	final	invoice.

61Development

62 The Way of Working

Releases.

The goal of the release stage

is to deploy the product into

production and ensure that the

stakeholders are ready to go into a

live environment.

We recommend three

environments	to	work	with:	

Development, Beta, and

Production. Software development

requires at least three stages of

environments to ensure quality

control. When releasing, it is vital

to make sure everything is working

as expected in the previous

environment before progressing it

onto the next one.

63Releases

64 The Way of Working

Release details.

• Access	to	the	customer’s	cloud	services.	

• A	completed	definition	of	done	checklist	for	

everything being released.

• A completed beta or prod release checklist (for

whichever environment is being released to, see

following pages for more information).

• Verified	database	update	scripts.	

• Passing tests on the current environment

• A web engineer is required to start the release

process.

• The project team members smoke test to ensure

quality once the release has been completed.

• An operations engineer is required to approve

and manage the release process.

• Copies	of	the	environment’s	database	from	

before the release was completed.

• The application is now available on the

appropriate environment.

• There are appropriate levels of security in the

released product.

• A report of the passing tests against the newly

released environment.

65Releases

• The	project	team	lead	notifies	all	stakeholders	

when a product is about to be released, and once

the release has been completed.

• Definition	of	Done	

• Beta Release checklist

• Production Release checklist

• Automated scripts to improve the release

process

66 The Way of Working

Development (Local) environment.

The development environment is used by the project team to build the

application. All team members have their own local version running on

their computers, where they work on the tickets currently in the iteration.

Location

The	project	team’s	secure	local	machines.

Access

This	environment	is	available	only	for	the	project	team	and	isn’t	shown	to	

the product manager.

Beta environment.

Once an iteration has been completed and all tests are passing, the

product is released to beta for testing. The testing is completed both by

the project team and the customer as part of UATs.

As this can be a volatile environment, it is not recommended that any sort

of important information is kept on this environment as the database may

need to be wiped at any moment.

Location

Hosted	on	the	cloud	using	the	customer’s	nominated	service

The environments.

67Releases

Access

Typically, this is a closed environment and therefore not open to everyday

users, though the customer may choose to invite some people for user

testing. Anyone with the URL can get to it, though a login is normally

required.

Production environment.

The	production	environment	is	the	final	stage	where	only	the	most	

thoroughly tested code ends up. Nothing can end up in this environment

without	first	being	reviewed	in	the	other	ones.	

While most people associate the production environment with the

product being live, this is not necessarily the case. Until the URL is

actually shared with the public, the production site can act as a platform

where the public-ready code is kept.

Location

Hosted	on	the	cloud	using	the	customer’s	nominated	service

Access

Anyone with the URL (and login if required).

68 The Way of Working

Mobile applications are typically built and released in conjunction with

an environment release. As required, the project team can also release

Android debug or Apple TestFlight builds depending on the features or

testing required.

Development build / local environment.

The development process is done in a browser simulating the screen size

of a mobile device. As required, the project team can also do a debug build

onto an actual device which points to the local environment.

Debug build / beta environment.

As part of the beta environment release process, the debug build is

compiled which points to the beta environment. Typically, this compiled

app is sent on the customer for review.

Depending on the development work done in an iteration, there can be a

debug build released without the need for a beta environment release (i.e.

only if the interface is changing without a database change).

Location

Installed manually on devices. We also recommend that it is saved

somewhere the product manager can access it (i.e. a wiki).

Access

Anyone	with	access	to	the	debug	build	file.

Releasing mobile applications.

69Releases

Production build / production environment.

As part of the production environment release process, the production

build is compiled which points to the production environment and

published to the applicable app store.

As with the beta environment, there can be a debug build released

without the need for a production environment release, however this is

uncommon.

For	iOS	app	releases,	they	must	go	through	TestFlight	and	Apple’s	

approval process before they can be released to the iOS App Store.

Location

Stored on app store.

Access

Anyone.

70 The Way of Working

As part of the development lifecycle, an application moves from the

development environment, into beta, then eventually into production.

In order to progress into the next environment, the application needs to

meet certain criteria before it can be approved for release. These criteria

are	outlined	in	two	checklists:	The	Beta	Release	Checklist	and	Production	

Release Checklist.

After both releases have been completed, they should be smoke tested by

the project team to ensure that the release happened correctly.

Beta release checklist.

This	checklist	is	to	be	completed	when	an	iteration	has	finished	

development on the local environment and is ready to be released onto

beta for testing. Before the release starts, the project team needs to

complete the Beta Release Checklist and submit it to an Operations

engineer for approval.

While most of the criteria involves routine security and quality checks,

two important artefacts which are required are a Testing Report and a

Traceability Matrix.

A Testing Report shows the current state of the tests run against the

application, which are expected to all be passing before the release can

continue. The tests which are written cover the iteration requirements,

acceptance criteria and functionality.

A Traceability Matrix maps tests to the requirements of a project. From

this artefact you can see the test coverage, and where tests need to be

written in order to give peace of mind over the applications reliability.

Checklists.

71Releases

Before beta moves onto production, the production database is

first	copied	down	onto	beta	so	that	smoke	testing	is	using	accurate	

information.

Production release checklist.

The Production Release Checklist is prepared when the product on

beta is ready to be released to production. Before the application can be

released into the production environment, the team also needs to make

sure that the customer is happy with the current state of beta (through a

UAT session). Once the checklist has been completed, then the proposed

release and its checklist is submitted to an Operations engineer to begin

the release.

72 The Way of Working

Support.

The support stage is focused on

helping the product transition

from active development to daily

operation. The support team

helps to monitor the production

environment and focuses on

keeping the product running

smoothly.

While the support stage is

optional, planning and preparing

for operational support in advance

allows for a more detailed

knowledge transfer to take place.

For that reason, it is best to

assume that all applications will go

through this stage.

The support staff have a system

to triage, replicate, diagnose and

attempt to resolve any problems

which may be encountered. The

original project team can also

be called upon if an escalation is

required.

73Support

74 The Way of Working

Support details.

• The project is in the production environment.

• There is an active support agreement.

• The	product	has	completed	the	first	two	stages	

of support.

• The support agreement and issue severity dictate

the amount of support time which is available to

work on an issue.

• The original project team may need to be called

upon if an issue is escalated.

• The project team must be available to complete

the initial handover to the support team.

• A product which is maintained as long as the

service agreement is active.

75Support

2 Daily Huddles

• Twice	a	day:	one	in	the	morning,	one	after	lunch.	

• Used to prioritise any new tickets which have

come in.

• New tickets and any other outstanding pieces of

work are assigned to available team members.

 Weekly Team Meeting

• A chance for the support team to share new

knowledge

• Review tickets which have been completed

recently or are making trouble

• Review customer satisfaction

Knowledge Handover Session

• Completed at the beginning of the support cycle

• Held with the original development team

• See the stages of support section (page 72) for

more information

• Product backlog

• Service Desk portal

• Automated tool to set up local environments

quickly

76 The Way of Working

Tickets.

There	are	three	types	of	requests	which	may	be	raised:	bug	fixes,	feature	

enhancements or general inquiries. The requests which come in are

typically	allocated	into	a	time	box	(which	would	have	been	pre-defined	in	

a support agreement with the customer), and a support team member is

assigned to work on them.

Severity

All requests which are submitted are given a severity level, which dictates

how urgently the ticket is worked on. There are currently four levels of

severity:

77Support

Produces an emergency in which

the software is inoperable, produces

incorrect results, or fails completely.

Produces an inconvenient situation in

which the software is usable but does not

provide a function in the most convenient

or expeditious manner, and the user

suffers	little	or	no	significant	impact.

Produces a noticeable situation in which

the software use is affected in some way

but can be corrected by a documented

change or by a future, regular release

from a project team.

Produces a detrimental situation in which

performance (throughput or response)

of the software degrades substantially

under responsible loads, such that there

is a severe impact on use. The software

is usable but materially incomplete.

One or more mainline functions or

commands might not operate, or the user

is	otherwise	significantly	impacted.

Blocker (Severity 1)

Critical (Severity 2)

Major (Severity 3)

Minor (Severity 4)

78 The Way of Working

When a project is transitioning from active development into support, it

is important that the handover of information is completed successfully.

This	reduces	the	risk	of	support	team	members	having	insufficient	

knowledge to solve a problem and needing to call in the original project

team to assist.

Phase 1: Analysis and Transition

Goal: To complete a knowledge transfer from the project team, and

ensure there is enough knowledge available for the support team

• Complete a knowledge transfer meeting with the project team

• Identify the single individual resource in the support team who

will be responsible for production support and escalations

• Hold a comprehensive audit of the existing infrastructure, application

and processes

• Look into the health and performance of the application across

platforms

• Review previous UAT results

• Complete an audit of the documentation, performance testing, and

reports

• Create a gap and requirements analysis on the project backlog

Phase 2: Planning and Readiness

Goal:	To	complete	any	missing	information	identified	in	the	previous	step	

and	fix	any	high-priority	bugs	currently	in	the	product.

• Fixing immediate and important issues

• Either through an additional iteration, ad-hoc development

resources or short-term hire.

• Create a Missing Documentation report

The stages of support.

79Support

• Write an Overall Performance Enhancement report

• Create a summary of the current backlog

Phase 3: Continuous Maintenance and Operational Support

Goal: An ongoing phase to support the product.

• Advise	the	customer	on	how	the	product’s	performance	could	be	

enhanced or improved upon as its usage takes off.

• Provide proactive and preventative monitoring through regular usage

and testing of the product

• Issue and bug tracking and troubleshooting

• Completing timely updates and requirements-based upgrades

• Maintain back-ups and provide recovery for the software

• Provide helpdesk or on-call support.

80 The Way of Working

Experimenting.

The mantra behind this Way

of Working is to discover new

boundaries. It is encouraged that

everyone proposes experiments in

the name of constantly improving

the methodology. If the results

of an experiment are approved

by the appropriate stakeholders,

it becomes a part of this Way of

Working. Any adopters of this

Way of Working are encouraged

to continue this process of

experimentation to adapt the Way

of Working to suit their unique

needs and experiences.

81Experimenting

82 The Way of Working

1. Identify improvement potential
The	first	stage	of	an	experiment	is	to	identify	the	need	to	conduct	one,	

and then clearly explain what the problem is. Useful questions which can

assist	in	this	process	are:	

• Where did the problem occur?

• When did the problem occur?

• What process did the problem involve?

• How is the problem measured?

• How much is the problem costing?

2. Analyse current methods
To	find	the	best	solution,	the	root	cause	of	the	problem	must	first	be	

properly	identified.	The	root	cause	can	be	found	through	analysing	the	

historical data and speaking with people this problem has affected.

3. Generate ideas or improvements
The next step is to identify potential solutions. Brainstorming is an

important part of this step, as it helps conceive of a range of solutions. For

each idea, establish how it will help solve the problem and any potential

pros and cons.

83Experimenting

4. Develop an Implementation Plan
After	a	range	of	solutions	have	been	identified,	the	most	appropriate	

one for the problem can be chosen. The next step is to create a strategy

to implement a solution. The following points should be answered in the

Implementation	Plan:	

• Who is in charge of the experiment?

• Who is involved in the experiment?

• Duration of the experiment

• How we are implementing the experiment

• How to track or measure the experiment (in money, time, customer

satisfaction, or another critical metric)

5. Evaluate the new method
Once	the	Implementation	Plan	has	ended,	the	findings	of	the	experiment	

are discussed amongst the stakeholders. They will then determine

whether the experiment achieved the measurable goals and if it could be

considered	a	success.	If	the	method	failed,	it	should	be	identified	why	and	

a new strategy should be iterated over.

If the method worked, then the strategy should be proposed to

management, who alongside the experiment stakeholders, will determine

if	the	strategy	is	both	beneficial	and	applicable	across	the	whole	company.	

If the method is approved, it becomes a part of the businesses Way of

Working.

84 The Way of Working

Evolving a codebot.

The dream of the Codebots

platform is to create a product

where humans and bots can work

together to create awesome

software. For certain customers

there is the potential to create

a	new	bot	that	writes	a	specific	

technology stack or framework.

85Evolving a codebot

86 The Way of Working

Part	of	what	makes	the	codebots	so	efficient	is	the	use	of	‘behaviours’,	

which are patterns of functionality which are often repeated in different

products (i.e. CRUD is in almost every product in some form or another).

Codebots takes advantages of these repetitions and uses them as a

chance to save development effort by creating reusable behaviours which

can be applied to any part of a product.

The Codebots library of behaviours has been built out over many years

as a result of the multitude of products which have been worked upon.

During the brief and scoping stage of each product, the team were

able to identify behaviours which could be used to complete certain

requirements. They were also able to determine pieces of functionality

which could potentially be turned into new behaviours.

The ability to identify a potential behaviour is about recognising patterns

in both functionality and user experience. A behaviour may be something

which the team developed in a previous application, or it may be

something which is quite common and is most likely going to need to be

developed again in the future.

Here	is	sample	list	of	some	behaviours	are:

(This is not a full list of what is available on Codebots, it is just an example)

Identifiy an opportunity.

87Evolving a codebot

88 The Way of Working

Once	an	opportunity	has	been	identified,	the	project	team	have	an	

opportunity to train the bot in the new behaviour (or improve/extended

an existing one).

The following diagram demonstrates how this idea can turn into a chance

to improve the bots. It follows the initial development process of the

concept and how the bot gets trained.

(In	this	flow	chart,	the	developer	would	not	write	inside	the	protected	

regions of the code.)

A. For	each	issue:	“Can	the	bot	write	the	code	required	to	meet	the	

requirements?”

B. If yes, the developer will build the model. (If not, go to E)

C. The codebot will write the code.

D. If	the	requirements	are	fulfilled,	the	issue	is	complete.

E. If	the	requirements	can’t	be	met,	the	developer	will	create	the	

reference implementation.

F. The developer will train the bot by updating the model and

transformations.

G. The developer will compare the codebot written code to the

reference implementation.

H. If they match, the developer will build the model (go to step C).

I. If	they	don’t	match,	the	abstraction	step	needs	to	be	performed	again	

(go to step G).

Starting the evolution.

89Evolving a codebot

90 The Way of Working

The following diagram demonstrates how the bot could potentially write

a feature which meets the requirements without any customisation being

required. At this stage, all of the code has already been abstracted into

the	bot’s	model.	Developers	only	need	to	build	the	model	for	the	bot	to	

receive its instructions and write 100% of the target application.

A. For	each	issue,	confirm	that	the	codebot	can	write	the	code	required	

to	fulfil	the	requirements.

B. If yes, the developer will build the model. If no, then it will need to go

back to diagram one.

C. The codebot will write the code

D. Then,	if	the	requirements	are	fulfilled	then	the	issue	is	complete.	If	

not, development continues.

Let the bots take over.

91Evolving a codebot

92 The Way of Working

The following diagram is the stage where we want to operate. Developers

work with the bots to create software, following the process for training

the bot and ensuring the code written by the bot meets the requirements.

The ultimate goal for this process is to progressively increase the amount

of project code produced by the bots.

A. For	each	issue:	“Can	the	bot	write	the	code	required	to	meet	the	

requirements?”

B. If yes, the developer will build the model.

C. The codebot will write the code.

D. If	the	requirements	are	fulfilled,	then	issue	is	complete.

E. If the answer to A	no,	ask:	“Is	it	warranted	to	train	the	bot	to	support	

this code in the future?”

F. If yes, the developer will create the reference implementation. (Go to

K for no)

G. The developer will train the bot by updating the model and

transformations.

H. Compare	the	codebot’s	code	to	the	reference	implementation.

I. If they match, the developer will build the model (go to step B).

J. If	they	don’t	match,	the	abstraction	step	needs	to	be	performed	again	

(go to step G).

K. If the answer to E is no, the code will be written by the developer

in a protected region. This would occur in the case of one-off

development or customising the code that the codebot has written.

Business as usual.

93Evolving a codebot

94

95

Interested in learning more about Codebots or think it

might be a good fit for your organisation?

(07) 3371 2003

sales@codebots.com

Get in contact

www.codebots.com

